
How do you make the graph for $y=\ln \left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right)$?
Answer
465k+ views
Hint: We recall the domain and range of natural logarithmic function. We use restriction of domain on the natural logarithmic function to find restriction on the argument $1+\dfrac{x}{\ln \left( 1-x \right)}$. We use these restrictions to plot a decreasing curve within interval $x\in \left( 0,1 \right]$with asymptotes as negative $y-$axis.
Complete step by step answer:
We know that natural logarithmic function which has base $e$ only takes positive real values as inputs or arguments. It means
\[\ln x:{{\mathsf{\mathbb{R}}}^{+}}\to \mathsf{\mathbb{R}}\]
We also know $\ln x$ returns positive value if $x > 1$ which means $\ln x > 0\Rightarrow x > 1$. The function $\ln x$ returns negative if $x\in \left( 0,1 \right)$ which means$\ln x < 0\Rightarrow x\in \left( 0,1 \right)$. The zero for $\ln x$ is $x=1$ which means $\ln x=0\Rightarrow x=1$ \[\]
We are asked to find the graph of following function
\[y=\ln \left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right)\]
We see that the logarithm inside the bracket $\ln \left( 1-x \right)$ exists if $1-x > 0\Rightarrow x < 1$. We also have
\[\begin{align}
& 1+\dfrac{x}{\ln \left( 1-x \right)} > 0 \\
& \Rightarrow t > 0\left( \text{where }1+\dfrac{x}{\ln \left( 1-x \right)}=t\text{ } \right) \\
\end{align}\]
Now we get 3 possible cases. \[\]
Case-1:We first have the denominator $\ln \left( 1-x \right) > 0$ then we have
\[\begin{align}
& 1-x > 1 \\
& \Rightarrow -x > 0 \\
& \Rightarrow x < 0 \\
\end{align}\]
We use the above result $x < 0$ and $\ln \left( 1-x \right) > 0$ to check that $1+\dfrac{x}{\ln \left( 1-x \right)} < 1$ . So we cannot have $\ln \left( t \right) > 0$ from case-1. \[\]
Case-2:We have
\[\begin{align}
& \ln \left( 1-x \right)=0 \\
& \Rightarrow 1-x=1 \\
& \Rightarrow x=0 \\
\end{align}\]
We use L’hospital rule to on the argument of $t$ t have
\[\begin{align}
& \displaystyle \lim_{x \to 0}t=\displaystyle \lim_{x \to 0}\left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right) \\
& \Rightarrow \displaystyle \lim_{x \to 0}t=1+\displaystyle \lim_{x \to 0}\dfrac{x}{\ln \left( 1-x \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 0}t=1+\displaystyle \lim_{x \to 0}\dfrac{1}{\dfrac{1}{1-x}\left( -1 \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 0}t=1-1=0 \\
\end{align}\]
So we argue that $t$ approaches to 0 as $x$ approaches to 0. \[\]
Case-3: We have
\[\begin{align}
& \ln \left( 1-x \right) > 0 \\
& \Rightarrow 1-x > 1 \\
& \Rightarrow -x > 0 \\
& \Rightarrow x < 0 \\
\end{align}\]
We use the above result $x < 0$ and previously obtained $\ln \left( 1-x \right) > 0$ to check that $1+\dfrac{x}{\ln \left( 1-x \right)} > 1\Rightarrow t > 1$ . So we cannot have $\ln \left( t \right) > 0$ from case-3. So our function is valid for $x\in \left( 0,1 \right)$ and as $x \to 1$ we have $y=\ln t\to 1$. We also have $x \to 0\Rightarrow y\to -\infty $.So our required graph is \[\]
Note:
We note that the given graph is the graph of a decreasing curve starting from $x=1$ and asymptotic about the negative $y-$ axis which means the curve meets the $y-$ axis at infinity. We note that if there two functions $f\left( x \right),g\left( x \right)$ such that $f\left( x \right)\to 0,g\left( x \right)\to 0$ as $x \to 0$ then we have the quotient $\dfrac{f\left( x \right)}{g\left( x \right)}$ in $\dfrac{0}{0}$ indeterminate from. We find the quotients in indeterminate from using L’hospital rule as $\displaystyle \lim_{x \to 0}\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}$. The other indeterminate form is $\dfrac{\infty }{\infty },{{1}^{\infty }},\infty -\infty $ etc.
Complete step by step answer:
We know that natural logarithmic function which has base $e$ only takes positive real values as inputs or arguments. It means
\[\ln x:{{\mathsf{\mathbb{R}}}^{+}}\to \mathsf{\mathbb{R}}\]
We also know $\ln x$ returns positive value if $x > 1$ which means $\ln x > 0\Rightarrow x > 1$. The function $\ln x$ returns negative if $x\in \left( 0,1 \right)$ which means$\ln x < 0\Rightarrow x\in \left( 0,1 \right)$. The zero for $\ln x$ is $x=1$ which means $\ln x=0\Rightarrow x=1$ \[\]
We are asked to find the graph of following function
\[y=\ln \left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right)\]
We see that the logarithm inside the bracket $\ln \left( 1-x \right)$ exists if $1-x > 0\Rightarrow x < 1$. We also have
\[\begin{align}
& 1+\dfrac{x}{\ln \left( 1-x \right)} > 0 \\
& \Rightarrow t > 0\left( \text{where }1+\dfrac{x}{\ln \left( 1-x \right)}=t\text{ } \right) \\
\end{align}\]
Now we get 3 possible cases. \[\]
Case-1:We first have the denominator $\ln \left( 1-x \right) > 0$ then we have
\[\begin{align}
& 1-x > 1 \\
& \Rightarrow -x > 0 \\
& \Rightarrow x < 0 \\
\end{align}\]
We use the above result $x < 0$ and $\ln \left( 1-x \right) > 0$ to check that $1+\dfrac{x}{\ln \left( 1-x \right)} < 1$ . So we cannot have $\ln \left( t \right) > 0$ from case-1. \[\]
Case-2:We have
\[\begin{align}
& \ln \left( 1-x \right)=0 \\
& \Rightarrow 1-x=1 \\
& \Rightarrow x=0 \\
\end{align}\]
We use L’hospital rule to on the argument of $t$ t have
\[\begin{align}
& \displaystyle \lim_{x \to 0}t=\displaystyle \lim_{x \to 0}\left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right) \\
& \Rightarrow \displaystyle \lim_{x \to 0}t=1+\displaystyle \lim_{x \to 0}\dfrac{x}{\ln \left( 1-x \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 0}t=1+\displaystyle \lim_{x \to 0}\dfrac{1}{\dfrac{1}{1-x}\left( -1 \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 0}t=1-1=0 \\
\end{align}\]
So we argue that $t$ approaches to 0 as $x$ approaches to 0. \[\]
Case-3: We have
\[\begin{align}
& \ln \left( 1-x \right) > 0 \\
& \Rightarrow 1-x > 1 \\
& \Rightarrow -x > 0 \\
& \Rightarrow x < 0 \\
\end{align}\]
We use the above result $x < 0$ and previously obtained $\ln \left( 1-x \right) > 0$ to check that $1+\dfrac{x}{\ln \left( 1-x \right)} > 1\Rightarrow t > 1$ . So we cannot have $\ln \left( t \right) > 0$ from case-3. So our function is valid for $x\in \left( 0,1 \right)$ and as $x \to 1$ we have $y=\ln t\to 1$. We also have $x \to 0\Rightarrow y\to -\infty $.So our required graph is \[\]

Note:
We note that the given graph is the graph of a decreasing curve starting from $x=1$ and asymptotic about the negative $y-$ axis which means the curve meets the $y-$ axis at infinity. We note that if there two functions $f\left( x \right),g\left( x \right)$ such that $f\left( x \right)\to 0,g\left( x \right)\to 0$ as $x \to 0$ then we have the quotient $\dfrac{f\left( x \right)}{g\left( x \right)}$ in $\dfrac{0}{0}$ indeterminate from. We find the quotients in indeterminate from using L’hospital rule as $\displaystyle \lim_{x \to 0}\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}$. The other indeterminate form is $\dfrac{\infty }{\infty },{{1}^{\infty }},\infty -\infty $ etc.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
