
What is the lowest common multiple of 12 and 15.
Answer
526.2k+ views
Hint: We are given a question to find the lowest common multiple of two numbers 12 and 15. We will start by writing their factors. Then, we will write the lowest common multiple of 12 and 15 as the product of the factors which are not common in either of the numbers and the factors which are common in both is written only once. Hence, we will have the LCM of the given numbers 12 and 15.
Complete step by step answer:
According to the given question, we have to find the lowest common multiple of 12 and 15.
We will start by writing the factors of each of the numbers 12 and 15. We have,
\[12=2\times 2\times 3\]
And \[15=3\times 5\]
\[LCM(12,15)\]is done as follows,
In the factorization of 12, there are 2 twos’, so we will write that in LCM, we get,
\[LCM(12,15)=2\times 2\]
Next, we can see that 3 is present as a factor in both 12 and 15, so in the LCM we will write it only once, we have,
\[LCM(12,15)=2\times 2\times 3\]
Next, in the factorization of 15, we have a factor 5, and so we write this too in the LCM. And we have,
\[LCM(12,15)=2\times 2\times 3\times 5\]
\[\Rightarrow LCM(12,15)=60\]
Therefore, the \[LCM(12,15)=60\].
Note: We often finish off finding the LCM by multiplying the terms directly, that is, \[12\times 15=180\] but that is not the LCM, the question was to find the lowest possible, multiplying the numbers directly won’t lead us to the lowest multiple always.
Complete step by step answer:
According to the given question, we have to find the lowest common multiple of 12 and 15.
We will start by writing the factors of each of the numbers 12 and 15. We have,
\[12=2\times 2\times 3\]
And \[15=3\times 5\]
\[LCM(12,15)\]is done as follows,
In the factorization of 12, there are 2 twos’, so we will write that in LCM, we get,
\[LCM(12,15)=2\times 2\]
Next, we can see that 3 is present as a factor in both 12 and 15, so in the LCM we will write it only once, we have,
\[LCM(12,15)=2\times 2\times 3\]
Next, in the factorization of 15, we have a factor 5, and so we write this too in the LCM. And we have,
\[LCM(12,15)=2\times 2\times 3\times 5\]
\[\Rightarrow LCM(12,15)=60\]
Therefore, the \[LCM(12,15)=60\].
Note: We often finish off finding the LCM by multiplying the terms directly, that is, \[12\times 15=180\] but that is not the LCM, the question was to find the lowest possible, multiplying the numbers directly won’t lead us to the lowest multiple always.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

