
How much longer is $1$ inch button than an $\dfrac{3}{8}$ inch button?
Answer
544.2k+ views
Hint: Firstly, take both the quantities and compare which is larger. Then write them in a subtraction equation and evaluate using the LCM method or else by cross-multiplying the fractions and then subtracting the second number from the first to get the numerator part and multiply the denominators to get a common denominator.
Complete step-by-step answer:
Given quantities are, $1$ inch and $\dfrac{3}{8}$ inch.
By comparing the quantities, we can say that $1 > \dfrac{3}{8}$
Since we must find how much is left of the first quantity after removing the second quantity, we shall write a subtraction equation.
$ \Rightarrow 1 - \dfrac{3}{8}$
We can write $1$ in fraction form as $\dfrac{1}{1}$,we can rewrite the equation as,
$ \Rightarrow \dfrac{1}{1} - \dfrac{3}{8}$
Now cross-multiply the fractions and then subtract the numerators and then multiply the denominators to get a common denominator.
$ \Rightarrow \dfrac{{(1 \times 8) - (3 \times 1)}}{{(1 \times 8)}}$
On further evaluation,
$ \Rightarrow \dfrac{{8 - 3}}{8}$
Which is equal to,
$ \Rightarrow \dfrac{5}{8}$
$\therefore $$1$ inch button is $\dfrac{5}{8}$ times longer than $\dfrac{3}{8}$ inch buttons.
Additional Information: Whenever there are different denominators in a subtraction equation, the first step must be to convert it in such a way to get the same denominators. Then only we should proceed to the subtraction operation. The quantity which is given in the question is an Inch which is a unit of length.$1$ inch$ = 2.54$ centimeters.
Note:
The above question can also be solved using LCM (least common multiples) method.
Firstly, write both the quantities in fraction form.
$ \Rightarrow \dfrac{1}{1};\dfrac{3}{8}$
Now, write the subtraction equation for the both quantities.
$ \Rightarrow \dfrac{1}{1} - \dfrac{3}{8}$
Now, find the multiples for the denominators
For $1$ the multiples are $1$,
For $8$ the multiples are $1\;,2,4,8,$
On comparing both the multiples, the LCM of $1$ and $8$ is $8$.
$\Rightarrow$$\dfrac{1}{1} = \dfrac{{(1 \times 8)}}{{(1 \times 8)}} = \dfrac{8}{8}$, (because $\dfrac{8}{1} = 8$)
$\Rightarrow$$\dfrac{3}{8} = \dfrac{{(3 \times 1)}}{{(8 \times 1)}} = \dfrac{3}{8}$, (because $\dfrac{8}{8} = 1$)
Therefore,
$ \Rightarrow \dfrac{8}{8} - \dfrac{3}{8}$
On further evaluation,
$ \Rightarrow \dfrac{5}{8}$
Complete step-by-step answer:
Given quantities are, $1$ inch and $\dfrac{3}{8}$ inch.
By comparing the quantities, we can say that $1 > \dfrac{3}{8}$
Since we must find how much is left of the first quantity after removing the second quantity, we shall write a subtraction equation.
$ \Rightarrow 1 - \dfrac{3}{8}$
We can write $1$ in fraction form as $\dfrac{1}{1}$,we can rewrite the equation as,
$ \Rightarrow \dfrac{1}{1} - \dfrac{3}{8}$
Now cross-multiply the fractions and then subtract the numerators and then multiply the denominators to get a common denominator.
$ \Rightarrow \dfrac{{(1 \times 8) - (3 \times 1)}}{{(1 \times 8)}}$
On further evaluation,
$ \Rightarrow \dfrac{{8 - 3}}{8}$
Which is equal to,
$ \Rightarrow \dfrac{5}{8}$
$\therefore $$1$ inch button is $\dfrac{5}{8}$ times longer than $\dfrac{3}{8}$ inch buttons.
Additional Information: Whenever there are different denominators in a subtraction equation, the first step must be to convert it in such a way to get the same denominators. Then only we should proceed to the subtraction operation. The quantity which is given in the question is an Inch which is a unit of length.$1$ inch$ = 2.54$ centimeters.
Note:
The above question can also be solved using LCM (least common multiples) method.
Firstly, write both the quantities in fraction form.
$ \Rightarrow \dfrac{1}{1};\dfrac{3}{8}$
Now, write the subtraction equation for the both quantities.
$ \Rightarrow \dfrac{1}{1} - \dfrac{3}{8}$
Now, find the multiples for the denominators
For $1$ the multiples are $1$,
For $8$ the multiples are $1\;,2,4,8,$
On comparing both the multiples, the LCM of $1$ and $8$ is $8$.
$\Rightarrow$$\dfrac{1}{1} = \dfrac{{(1 \times 8)}}{{(1 \times 8)}} = \dfrac{8}{8}$, (because $\dfrac{8}{1} = 8$)
$\Rightarrow$$\dfrac{3}{8} = \dfrac{{(3 \times 1)}}{{(8 \times 1)}} = \dfrac{3}{8}$, (because $\dfrac{8}{8} = 1$)
Therefore,
$ \Rightarrow \dfrac{8}{8} - \dfrac{3}{8}$
On further evaluation,
$ \Rightarrow \dfrac{5}{8}$
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

