Answer
Verified
373.8k+ views
Hint: In this problem we have to find the sum of the angles.
We will use the fact that the external angle of a triangle is equal to the sum of opposite two internal angles. For example: in the above figure \[\angle POT\] is an external angle of triangle \[\vartriangle POQ\] . Hence \[\angle POT\] can be written as the sum of opposite two internal angles.
i.e. \[\angle POT = \angle OPQ + \angle OQP\]
Complete step by step solution:
This problem is based on triangles. Triangle is a closed figure bounded by a three line segment. A triangle has three vertices, three sides and three angles.
The given diagram is mentioned below,
Let us assume, the Sum of all the angles in a triangle is \[180^\circ \] .
Consider the given question,
We know that the external angle is equal to the sum of opposite two internal angles.
Therefore from the figure we have,
\[\angle POT = \angle P + \angle Q\] ………………….(1)
\[\angle ROT = \angle T + \angle U\] …………………(2)
\[\angle POR = \angle R + \angle S\] …………………..(3)
Adding the equation (1), (2) and (3) , then we get
\[\angle P + \angle Q + \angle R + \angle S + \angle T + \angle U = \angle POT + \angle ROT + \angle POR\]
We know that the sum of all the angles about a point is equal to \[360^\circ \] .
Therefore, by the point \[O\] we can get
\[\angle POT + \angle ROT + \angle POR = 360^\circ \]
Hence, \[\angle P + \angle Q + \angle R + \angle S + \angle T + \angle U = {360^ \circ }\]
Therefore, Lines \[PS\] , \[RU\] and \[QT\] intersect at a common point \[O\] as shown in figure. \[\;P\] is joined to \[Q\] , \[R\] to \[S\] and \[T\] to \[U\] to form a triangle.
The value of is \[\angle P + \angle Q + \angle R + \angle S + \angle T + \angle U\] is \[{360^ \circ }\]
Hence option \[B\] is the correct answer.
So, the correct answer is “Option B”.
Note: Triangle is a closed figure bounded by a three line segment.
There are three types of triangle : scalene triangle, equilateral triangle and isosceles triangle.
Sum of all the angle of a triangle is \[180^\circ \]
External angle is equal to sum of opposite two internal angles.
Sum of all the angles about a point is equal to \[360^\circ \] .
We will use the fact that the external angle of a triangle is equal to the sum of opposite two internal angles. For example: in the above figure \[\angle POT\] is an external angle of triangle \[\vartriangle POQ\] . Hence \[\angle POT\] can be written as the sum of opposite two internal angles.
i.e. \[\angle POT = \angle OPQ + \angle OQP\]
Complete step by step solution:
This problem is based on triangles. Triangle is a closed figure bounded by a three line segment. A triangle has three vertices, three sides and three angles.
The given diagram is mentioned below,
Let us assume, the Sum of all the angles in a triangle is \[180^\circ \] .
Consider the given question,
We know that the external angle is equal to the sum of opposite two internal angles.
Therefore from the figure we have,
\[\angle POT = \angle P + \angle Q\] ………………….(1)
\[\angle ROT = \angle T + \angle U\] …………………(2)
\[\angle POR = \angle R + \angle S\] …………………..(3)
Adding the equation (1), (2) and (3) , then we get
\[\angle P + \angle Q + \angle R + \angle S + \angle T + \angle U = \angle POT + \angle ROT + \angle POR\]
We know that the sum of all the angles about a point is equal to \[360^\circ \] .
Therefore, by the point \[O\] we can get
\[\angle POT + \angle ROT + \angle POR = 360^\circ \]
Hence, \[\angle P + \angle Q + \angle R + \angle S + \angle T + \angle U = {360^ \circ }\]
Therefore, Lines \[PS\] , \[RU\] and \[QT\] intersect at a common point \[O\] as shown in figure. \[\;P\] is joined to \[Q\] , \[R\] to \[S\] and \[T\] to \[U\] to form a triangle.
The value of is \[\angle P + \angle Q + \angle R + \angle S + \angle T + \angle U\] is \[{360^ \circ }\]
Hence option \[B\] is the correct answer.
So, the correct answer is “Option B”.
Note: Triangle is a closed figure bounded by a three line segment.
There are three types of triangle : scalene triangle, equilateral triangle and isosceles triangle.
Sum of all the angle of a triangle is \[180^\circ \]
External angle is equal to sum of opposite two internal angles.
Sum of all the angles about a point is equal to \[360^\circ \] .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths