
How many lines can pass through two given points?
Answer
501k+ views
Hint: Infinite number of lines can pass through a single point. Similarly, an infinite number of curves can pass through 2 points, which are not straight lines. Only 1 straight line can pass through 2 points.
Complete step-by-step answer:
Only through Point A \[\to \] Infinite lines.
Complete step-by-step answer:
Let us consider the 2 points as A and B.
Now, infinite lines can pass through the point A as shown below.
Similarly, infinite lines can pass through point B.
Now, Let's take two points A and B together will have one line passing through it.
Only through Point A \[\to \] Infinite lines.
Only through Point B \[\to \] Infinite lines.
Through A and B \[\to \] 1
Number of straight lines that can pass through 2 points A and B = 1.
Through A and B \[\to \] 1
Number of straight lines that can pass through 2 points A and B = 1.
Note:
Let us consider a case of non-collinear points. If we have been given 4 points and need to find how many lines can pass through these points.
The method is to find the number of straight lines that can be formed.
3 Lines 5 Lines 6 Lines
\[\therefore \](4 - 1) (4 - 1) + (4 - 2) (4 - 1) + (4 - 2) + (4 - 3) + (4 - 4)
\[\therefore \]They are of the form:
\[\begin{align}
& h=\sum\limits_{i=1}^{n}{\left( n-i \right)}=\left( n-1 \right)+\left( n-2 \right)+\left( n-3 \right)+.....+\left( n-n \right) \\
& =\sum\limits_{i=1}^{n}{n}-\sum\limits_{i=1}^{n}{i}\Rightarrow L={{n}^{2}}-\dfrac{n\left( n+1 \right)}{2}=\dfrac{2{{n}^{2}}-{{n}^{2}}-n}{2} \\
& L=\dfrac{{{n}^{2}}-n}{2}=\dfrac{n\left( n-1 \right)}{2} \\
\end{align}\]
\[\therefore L=\dfrac{n\left( n-1 \right)}{2}\], where L = number of lines.
So, for 4 points, n=4,
\[L=\dfrac{4\left( 4-1 \right)}{2}=\dfrac{4\times 3}{2}=6\]lines.
Where n=1, \[L=\dfrac{1\left( 1-1 \right)}{2}=\dfrac{0}{2}\]i.e. Infinite number of lines.
Where n=2, \[L=\dfrac{2\left( 2-1 \right)}{2}=1\]etc.
Let us consider a case of non-collinear points. If we have been given 4 points and need to find how many lines can pass through these points.
The method is to find the number of straight lines that can be formed.
3 Lines 5 Lines 6 Lines
\[\therefore \](4 - 1) (4 - 1) + (4 - 2) (4 - 1) + (4 - 2) + (4 - 3) + (4 - 4)
\[\therefore \]They are of the form:
\[\begin{align}
& h=\sum\limits_{i=1}^{n}{\left( n-i \right)}=\left( n-1 \right)+\left( n-2 \right)+\left( n-3 \right)+.....+\left( n-n \right) \\
& =\sum\limits_{i=1}^{n}{n}-\sum\limits_{i=1}^{n}{i}\Rightarrow L={{n}^{2}}-\dfrac{n\left( n+1 \right)}{2}=\dfrac{2{{n}^{2}}-{{n}^{2}}-n}{2} \\
& L=\dfrac{{{n}^{2}}-n}{2}=\dfrac{n\left( n-1 \right)}{2} \\
\end{align}\]
\[\therefore L=\dfrac{n\left( n-1 \right)}{2}\], where L = number of lines.
So, for 4 points, n=4,
\[L=\dfrac{4\left( 4-1 \right)}{2}=\dfrac{4\times 3}{2}=6\]lines.
Where n=1, \[L=\dfrac{1\left( 1-1 \right)}{2}=\dfrac{0}{2}\]i.e. Infinite number of lines.
Where n=2, \[L=\dfrac{2\left( 2-1 \right)}{2}=1\]etc.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

