
How is line emission spectrum produced?
Answer
523.2k+ views
Hint: An emanation line will show up in a range if the source discharges explicit frequencies of radiation. This emanation happens when an iota, component, or particle in an energized state gets back to an arrangement of lower energy.
Complete answer:
As indicated by Bohr, there were just discrete permitted energy levels that the electron could involve. On the off chance that energy was added to a particle (through warmth, power, or light) the iota could assimilate explicit measures of this energy. This would cause the electron (he managed hydrogen in his underlying figurines) to bounce into a higher energy circle, known as a fixed state. Each state was described by a number, n. Assume a given electron hopped from n = 1 (the least conceivable energy) into n = 4. A particularly high-energy electron was supposed to be in an energized state.
After a brief timeframe, the electron would get back to its lower energy level, either in one bounce descending or in a progression of more modest hops through n = 3, n = 2, and so on To take each leap, the particle would need to deliver its overflow energy, which it did as a photon. Since there were just sure energy changes conceivable, just certain shades of light would be seen. (The shade of the light depended on the energy and recurrence of the produced photon.)
Note: At the point when an electron makes a change from a higher energy level to a lower one out of a particle, a photon is delivered with energy equivalent to the distinction in the energy of the levels. Such a range of electromagnetic energy is called discharge range
Complete answer:
As indicated by Bohr, there were just discrete permitted energy levels that the electron could involve. On the off chance that energy was added to a particle (through warmth, power, or light) the iota could assimilate explicit measures of this energy. This would cause the electron (he managed hydrogen in his underlying figurines) to bounce into a higher energy circle, known as a fixed state. Each state was described by a number, n. Assume a given electron hopped from n = 1 (the least conceivable energy) into n = 4. A particularly high-energy electron was supposed to be in an energized state.
After a brief timeframe, the electron would get back to its lower energy level, either in one bounce descending or in a progression of more modest hops through n = 3, n = 2, and so on To take each leap, the particle would need to deliver its overflow energy, which it did as a photon. Since there were just sure energy changes conceivable, just certain shades of light would be seen. (The shade of the light depended on the energy and recurrence of the produced photon.)
Note: At the point when an electron makes a change from a higher energy level to a lower one out of a particle, a photon is delivered with energy equivalent to the distinction in the energy of the levels. Such a range of electromagnetic energy is called discharge range
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

