
Like that image what is the rule for $\dfrac{d}{{dx}}(uv)$?
Answer
563.4k+ views
Hint:Let us assume u(x) and v(x) are two differentiable function of x and $f(x) = u(x)v(x)$ and then apply the definition of derivative of f(x),
$f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$
Complete step by step answer:
As, $f(x) = u(x)v(x)$
Then, $f(x + h) = u(x + h)v(x + h)$
From the definition of derivative of f(x) we get, $
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h} \\
\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{u(x + h)v(x + h) - u(x)v(x)}}{h} \\
\Rightarrow f'(x)= \mathop {\lim }\limits_{h \to 0} [\dfrac{{u(x + h)v(x + h) - u(x + h)v(x)}}{h} + \dfrac{{u(x + h)v(x) - u(x)v(x)}}{h}] \\
\Rightarrow f'(x)= \mathop {\lim }\limits_{h \to 0} [u(x + h)\dfrac{{v(x + h) - v(x)}}{h}] + \mathop {\lim }\limits_{h \to 0} [v(x)\dfrac{{u(x + h) - u(x)}}{h}] \\
\Rightarrow f'(x)= u(x)\mathop {\lim }\limits_{h \to 0} [\dfrac{{v(x + h) - v(x)}}{h}] + \mathop {v(x)\lim }\limits_{h \to 0} [\dfrac{{u(x + h) - u(x)}}{h}] \\
\therefore f'(x)= u(x)v'(x) + v(x)u'(x) \\
i.e.,\dfrac{d}{{dx}}[u(x)v(x)] = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} \\
$
Note:It is true for more than two differentiable functions. If a finite number of functions u, v, w, …….. are differentiable with respect to x, then
$\dfrac{d}{{dx}}(uvw...) = (vw...)\dfrac{{du}}{{dx}} + (uw...)\dfrac{{dv}}{{dx}} + (uv...)\dfrac{{dw}}{{dx}} + ...$
$f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$
Complete step by step answer:
As, $f(x) = u(x)v(x)$
Then, $f(x + h) = u(x + h)v(x + h)$
From the definition of derivative of f(x) we get, $
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h} \\
\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{u(x + h)v(x + h) - u(x)v(x)}}{h} \\
\Rightarrow f'(x)= \mathop {\lim }\limits_{h \to 0} [\dfrac{{u(x + h)v(x + h) - u(x + h)v(x)}}{h} + \dfrac{{u(x + h)v(x) - u(x)v(x)}}{h}] \\
\Rightarrow f'(x)= \mathop {\lim }\limits_{h \to 0} [u(x + h)\dfrac{{v(x + h) - v(x)}}{h}] + \mathop {\lim }\limits_{h \to 0} [v(x)\dfrac{{u(x + h) - u(x)}}{h}] \\
\Rightarrow f'(x)= u(x)\mathop {\lim }\limits_{h \to 0} [\dfrac{{v(x + h) - v(x)}}{h}] + \mathop {v(x)\lim }\limits_{h \to 0} [\dfrac{{u(x + h) - u(x)}}{h}] \\
\therefore f'(x)= u(x)v'(x) + v(x)u'(x) \\
i.e.,\dfrac{d}{{dx}}[u(x)v(x)] = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} \\
$
Note:It is true for more than two differentiable functions. If a finite number of functions u, v, w, …….. are differentiable with respect to x, then
$\dfrac{d}{{dx}}(uvw...) = (vw...)\dfrac{{du}}{{dx}} + (uw...)\dfrac{{dv}}{{dx}} + (uv...)\dfrac{{dw}}{{dx}} + ...$
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

