
Let\[f\left( n \right) = \left[ {\dfrac{1}{3} + \dfrac{{3n}}{{100}}} \right]n\] , where [n] denotes the greatest integer less than or equal to n. Then \[\sum\nolimits_{n = 1}^{56} {f(n)} \] is equal to
A. 56
B. 689
C. 1287
D. 1399
Answer
564.9k+ views
Hint: Here, find f (1), f (2), …, upto some terms and see the pattern. Find the values and if they form a sequence and then use formula.
Complete step-by-step answer:
We have \[f\left( n \right) = \left[ {\dfrac{1}{3} + \dfrac{{3n}}{{100}}} \right]n\]
Putting n = 1, 2, 3 …
\[\Rightarrow f\left( 1 \right) = \left[ {\dfrac{1}{3} + \dfrac{3}{{100}}} \right] \times 1 = \left[ {0.3 + 0.03} \right] \times 1 = \left[ {0.33} \right] \times 1 = 0 \times 1 = 0\]
\[\Rightarrow f\left( 2 \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 2}}{{100}}} \right] \times 2 = \left[ {0.3 + 0.06} \right] \times 2 = \left[ {0.36} \right] \times 2 = 0 \times 2 = 0\]
\[\Rightarrow f\left( 3 \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 3}}{{100}}} \right] \times 2 = \left[ {0.3 + 0.09} \right] \times 2 = \left[ {0.39} \right] \times 3 = 0 \times 3 = 0\]
.
.
.
\[\Rightarrow f\left( {22} \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 22}}{{100}}} \right] \times 22 = \left[ {0.3 + 0.66} \right] \times 22 = \left[ {0.96} \right] \times 22 = 0 \times 22 = 0\]
We can see that f (1) to f (22) = 0
Now,
\[\Rightarrow f\left( {23} \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 23}}{{100}}} \right] \times 23 = \left[ {\dfrac{{307}}{{300}}} \right] \times 23 = \left[ {1.02} \right] \times 23 = 1 \times 23 = 23\]
\[f\left( {24} \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 24}}{{100}}} \right] \times 24 = \left[ {0.3 + 0.72} \right] \times 24 = \left[ {1.02} \right] \times 24 = 1 \times 24 = 24\]
.
.
.
\[\Rightarrow f\left( {56} \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 56}}{{100}}} \right] \times 56 = \left[ {\dfrac{{604}}{{300}}} \right] \times 56 = \left[ {2.01} \right] \times 56 = 2 \times 56 = 112\]
f (23) + f (24) +...+ f (56) = 23 + 24 + ... + 55 + 2 × 56
Here, 23 + 24 + ... + 55 forms an AP with first term = 23, common difference = 1 and last term = 55.
Let nth term is 55
55 = 23 + (n – 1) × 1 = 22 + n ⇒ n = 33
Sum = $ \dfrac{{33}}{2}\left( {23 + 55} \right) = 33 \times 39 $
Now, 23 + 24 + ... + 55 + 112 = 33 × 39 + 112 = 1287 + 112 = 1399
\[\sum\nolimits_{n = 1}^{56} {f(n)} \]= 1399
So, the correct answer is “Option D”.
Note: In these types of questions, find the value keeping in mind the greatest integer function. Do not find value at each value because the solution becomes more complicated. Try to make a pattern in results obtained by putting each value.
The Greatest Integer Function is denoted by f(x) = [x].
For all real numbers, x, the greatest integer function gives the largest integer less than or equal to x. It rounds down a real number to the nearest integer.
For example: [1.2] = 1, [1.7] = 1, [3.2] = 3, [4.4] = 4, [– 3] = – 2, [– 1.8] = – 2, [– 2.3] = – 3, [– 5.4] = – 6
Complete step-by-step answer:
We have \[f\left( n \right) = \left[ {\dfrac{1}{3} + \dfrac{{3n}}{{100}}} \right]n\]
Putting n = 1, 2, 3 …
\[\Rightarrow f\left( 1 \right) = \left[ {\dfrac{1}{3} + \dfrac{3}{{100}}} \right] \times 1 = \left[ {0.3 + 0.03} \right] \times 1 = \left[ {0.33} \right] \times 1 = 0 \times 1 = 0\]
\[\Rightarrow f\left( 2 \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 2}}{{100}}} \right] \times 2 = \left[ {0.3 + 0.06} \right] \times 2 = \left[ {0.36} \right] \times 2 = 0 \times 2 = 0\]
\[\Rightarrow f\left( 3 \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 3}}{{100}}} \right] \times 2 = \left[ {0.3 + 0.09} \right] \times 2 = \left[ {0.39} \right] \times 3 = 0 \times 3 = 0\]
.
.
.
\[\Rightarrow f\left( {22} \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 22}}{{100}}} \right] \times 22 = \left[ {0.3 + 0.66} \right] \times 22 = \left[ {0.96} \right] \times 22 = 0 \times 22 = 0\]
We can see that f (1) to f (22) = 0
Now,
\[\Rightarrow f\left( {23} \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 23}}{{100}}} \right] \times 23 = \left[ {\dfrac{{307}}{{300}}} \right] \times 23 = \left[ {1.02} \right] \times 23 = 1 \times 23 = 23\]
\[f\left( {24} \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 24}}{{100}}} \right] \times 24 = \left[ {0.3 + 0.72} \right] \times 24 = \left[ {1.02} \right] \times 24 = 1 \times 24 = 24\]
.
.
.
\[\Rightarrow f\left( {56} \right) = \left[ {\dfrac{1}{3} + \dfrac{{3 \times 56}}{{100}}} \right] \times 56 = \left[ {\dfrac{{604}}{{300}}} \right] \times 56 = \left[ {2.01} \right] \times 56 = 2 \times 56 = 112\]
f (23) + f (24) +...+ f (56) = 23 + 24 + ... + 55 + 2 × 56
Here, 23 + 24 + ... + 55 forms an AP with first term = 23, common difference = 1 and last term = 55.
Let nth term is 55
55 = 23 + (n – 1) × 1 = 22 + n ⇒ n = 33
Sum = $ \dfrac{{33}}{2}\left( {23 + 55} \right) = 33 \times 39 $
Now, 23 + 24 + ... + 55 + 112 = 33 × 39 + 112 = 1287 + 112 = 1399
\[\sum\nolimits_{n = 1}^{56} {f(n)} \]= 1399
So, the correct answer is “Option D”.
Note: In these types of questions, find the value keeping in mind the greatest integer function. Do not find value at each value because the solution becomes more complicated. Try to make a pattern in results obtained by putting each value.
The Greatest Integer Function is denoted by f(x) = [x].
For all real numbers, x, the greatest integer function gives the largest integer less than or equal to x. It rounds down a real number to the nearest integer.
For example: [1.2] = 1, [1.7] = 1, [3.2] = 3, [4.4] = 4, [– 3] = – 2, [– 1.8] = – 2, [– 2.3] = – 3, [– 5.4] = – 6
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

