
Let${\text{A = }}\left( {\begin{array}{*{20}{c}}
6&2&2 \\
{ - 2}&{ - 3}&{ - 1} \\
2&{ - 1}&3
\end{array}} \right)$and\[f(x) = \mid xI - A\mid \], then$f(A)$equals
$(a){\text{ 0}}$
$(b){\text{ A}}$
$(c){\text{ 2A}}$
$(d){\text{ - A}}$
Answer
617.4k+ views
Hint: We are asked to solve the equation in the above question by using the given matrix. Simply, substitute the given matrix and the identity matrix in the given equation\[f(x) = \mid xI - A\mid \] and evaluate it further.
Complete step-by-step answer:
We have the given matrix as
${\text{A = }}\left( {\begin{array}{*{20}{c}}
6&2&2 \\
{ - 2}&{ - 3}&{ - 1} \\
2&{ - 1}&3
\end{array}} \right)$
Now, we have the given equation as\[f(x) = \mid xI - A\mid \], therefore after substituting, the values in this equation, we get
\[ \Rightarrow \left| {xI - A} \right|{\text{ = }}\left| {x\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
6&2&2 \\
{ - 2}&{ - 3}&{ - 1} \\
2&{ - 1}&3
\end{array}} \right)} \right|\]
$ \Rightarrow \left| {xI - A} \right|{\text{ = }}\left( {\begin{array}{*{20}{c}}
{x - 6}&{ - 2}&{ - 2} \\
2&{x + 3}&1 \\
{ - 2}&1&{x - 3}
\end{array}} \right)$
After applying ${R_3} \to {R_2} + {R_3}$, we get
$ \Rightarrow \left| {xI - A} \right|{\text{ = }}\left( {\begin{array}{*{20}{c}}
{x - 6}&{ - 2}&{ - 2} \\
2&{x + 3}&1 \\
0&{x + 4}&{x - 2}
\end{array}} \right)$
$ = (x - 6)[(x - 2)(x + 3) - 1(x + 4)] - 2[ - 2(x - 2) + 2(x + 4)]$
$ = (x - 6)(({x^2} + 3x - 2x - 6) - x - 4) - 2( - 2x + 4 + 2x + 8)$
$ = (x - 6)({x^2} - 10) - 2(12)$
$ = {x^3} - 10x - 6{x^2} + 60 - 24$
$ = {x^3} - 10x - 6{x^2} + 36$
$f(x) = \left| {xI - A} \right| = {x^3} - 6{x^2} - 10x + 36$ … (1)
Now, after substituting the value of the given matrix in equation (1), we get,
$f(A) = {A^3} - 6{A^2} - 10A + 36I$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) - 6\left( {\begin{array}{*{20}{c}}
{36}&4&{16} \\
{ - 8}&6&{ - 4} \\
{20}&4&{14}
\end{array}} \right) - 10\left( {\begin{array}{*{20}{c}}
6&2&2 \\
{ - 2}&{ - 3}&{ - 1} \\
2&{ - 1}&3
\end{array}} \right) + 36\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 216}&{ - 24}&{ - 96} \\
{48}&{ - 36}&{24} \\
{ - 120}&{ - 24}&{ - 84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 60}&{ - 20}&{ - 20} \\
{20}&{30}&{10} \\
{ - 20}&{10}&{ - 30}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{36}&0&0 \\
0&{36}&0 \\
0&0&{36}
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 216}&{ - 24}&{ - 96} \\
{48}&{ - 36}&{24} \\
{ - 120}&{ - 24}&{ - 84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 60 + 36}&{ - 20}&{ - 20} \\
{20}&{30 + 36}&{10} \\
{ - 20}&{10}&{ - 30 + 36}
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 24 - 216}&{ - 20 - 24}&{ - 20 - 96} \\
{20 + 48}&{66 - 36}&{10 + 24} \\
{ - 20 - 120}&{10 - 24}&{6 - 84}
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 240}&{ - 44}&{ - 116} \\
{ - 68}&{30}&{34} \\
{ - 140}&{ - 14}&{ - 78}
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
$ = 0$
Hence, the required solution is the option$(a){\text{ 0}}$.
Note: When we face such a type of problem, the key point is to have an adequate knowledge of the matrices and its various properties like addition, multiplication, subtraction, etc. Substitute the matrices in the given expression and perform the required operations like addition, multiplication, etc. to obtain the required solution.
Complete step-by-step answer:
We have the given matrix as
${\text{A = }}\left( {\begin{array}{*{20}{c}}
6&2&2 \\
{ - 2}&{ - 3}&{ - 1} \\
2&{ - 1}&3
\end{array}} \right)$
Now, we have the given equation as\[f(x) = \mid xI - A\mid \], therefore after substituting, the values in this equation, we get
\[ \Rightarrow \left| {xI - A} \right|{\text{ = }}\left| {x\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
6&2&2 \\
{ - 2}&{ - 3}&{ - 1} \\
2&{ - 1}&3
\end{array}} \right)} \right|\]
$ \Rightarrow \left| {xI - A} \right|{\text{ = }}\left( {\begin{array}{*{20}{c}}
{x - 6}&{ - 2}&{ - 2} \\
2&{x + 3}&1 \\
{ - 2}&1&{x - 3}
\end{array}} \right)$
After applying ${R_3} \to {R_2} + {R_3}$, we get
$ \Rightarrow \left| {xI - A} \right|{\text{ = }}\left( {\begin{array}{*{20}{c}}
{x - 6}&{ - 2}&{ - 2} \\
2&{x + 3}&1 \\
0&{x + 4}&{x - 2}
\end{array}} \right)$
$ = (x - 6)[(x - 2)(x + 3) - 1(x + 4)] - 2[ - 2(x - 2) + 2(x + 4)]$
$ = (x - 6)(({x^2} + 3x - 2x - 6) - x - 4) - 2( - 2x + 4 + 2x + 8)$
$ = (x - 6)({x^2} - 10) - 2(12)$
$ = {x^3} - 10x - 6{x^2} + 60 - 24$
$ = {x^3} - 10x - 6{x^2} + 36$
$f(x) = \left| {xI - A} \right| = {x^3} - 6{x^2} - 10x + 36$ … (1)
Now, after substituting the value of the given matrix in equation (1), we get,
$f(A) = {A^3} - 6{A^2} - 10A + 36I$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) - 6\left( {\begin{array}{*{20}{c}}
{36}&4&{16} \\
{ - 8}&6&{ - 4} \\
{20}&4&{14}
\end{array}} \right) - 10\left( {\begin{array}{*{20}{c}}
6&2&2 \\
{ - 2}&{ - 3}&{ - 1} \\
2&{ - 1}&3
\end{array}} \right) + 36\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 216}&{ - 24}&{ - 96} \\
{48}&{ - 36}&{24} \\
{ - 120}&{ - 24}&{ - 84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 60}&{ - 20}&{ - 20} \\
{20}&{30}&{10} \\
{ - 20}&{10}&{ - 30}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{36}&0&0 \\
0&{36}&0 \\
0&0&{36}
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 216}&{ - 24}&{ - 96} \\
{48}&{ - 36}&{24} \\
{ - 120}&{ - 24}&{ - 84}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 60 + 36}&{ - 20}&{ - 20} \\
{20}&{30 + 36}&{10} \\
{ - 20}&{10}&{ - 30 + 36}
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 24 - 216}&{ - 20 - 24}&{ - 20 - 96} \\
{20 + 48}&{66 - 36}&{10 + 24} \\
{ - 20 - 120}&{10 - 24}&{6 - 84}
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
{240}&{44}&{116} \\
{68}&{ - 30}&{ - 34} \\
{140}&{14}&{78}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 240}&{ - 44}&{ - 116} \\
{ - 68}&{30}&{34} \\
{ - 140}&{ - 14}&{ - 78}
\end{array}} \right)$
$ = \left( {\begin{array}{*{20}{c}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
$ = 0$
Hence, the required solution is the option$(a){\text{ 0}}$.
Note: When we face such a type of problem, the key point is to have an adequate knowledge of the matrices and its various properties like addition, multiplication, subtraction, etc. Substitute the matrices in the given expression and perform the required operations like addition, multiplication, etc. to obtain the required solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

