
Let ${{z}_{1}}\text{ and }{{z}_{2}}$ be two complex numbers satisfying $\left| {{z}_{1}} \right|=9\text{ and }\left| {{z}_{2}}-3-4i \right|=4$ then, the minimum value of $\left| {{z}_{1}}-{{z}_{2}} \right|$ is
\[\begin{align}
& \text{A}.\text{ }0 \\
& \text{B}.\text{ 1} \\
& \text{C}.\text{ }\sqrt{2} \\
& \text{D}.\text{ 2} \\
\end{align}\]
Answer
590.1k+ views
Hint: To solve this question we will first of all use a property of complex number stated below:
\[\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
We will use the value $\left| {{z}_{2}}-3-4i \right|=4$ in above formula to calculate $\left| {{z}_{2}} \right|$ or least or maximum value of $\left| {{z}_{2}} \right|$. In between this we will use that, if $z=a+ib$ then mode of $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$. After calculating maximum value of $\left| {{z}_{2}} \right|$ we will again apply $\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|$ to calculate minimum value of $\left| {{z}_{1}}-{{z}_{2}} \right|$
Complete step-by-step answer:
We have a property of complex number stated as below:
If ${{Z}_{1}}\text{ and }{{Z}_{2}}$ are two complex numbers then \[\left| {{Z}_{1}}-{{Z}_{2}} \right|\ge \left| {{Z}_{1}} \right|-\left| {{Z}_{2}} \right|\]
We are given ${{z}_{1}}\text{ and }{{z}_{2}}$ two complex numbers and $\left| {{z}_{1}} \right|=9\text{ and }\left| {{z}_{2}}-3-4i \right|=4$
Consider \[\left| {{z}_{2}}-3-4i \right|\]
Taking minus common, we get:
\[\left| {{z}_{2}}-\left( 3+4i \right) \right|\]
Using formula stated above by using ${{Z}_{2}}=\left( 3+4i \right)$ we get:
\[\left| {{z}_{2}}-\left( 3+4i \right) \right|\ge \left| {{z}_{2}} \right|-\left| 3+4i \right|\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
We have a complex number $z=a+ib$ then the mode of z is $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
We have $\left| 3+4i \right|$ applying formula stated above to calculate $\left| 3+4i \right|$ we get:
\[\begin{align}
& \left| 3+4i \right|=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 4 \right)}^{2}}} \\
& \left| 3+4i \right|=\sqrt{9+16} \\
& \left| 3+4i \right|=\sqrt{25} \\
& \left| 3+4i \right|=\pm 5 \\
\end{align}\]
Now, as the LHS of the above equation has mode = negative value is not possible.
\[\Rightarrow \left| 3+4i \right|=\pm 5\]
Using this in equation (i), we get:
\[\left| {{z}_{2}}-\left( 3+4i \right) \right|\ge \left| {{z}_{2}} \right|-5\]
Now, as \[\begin{align}
& \left| {{z}_{2}}-\left( 3+4i \right) \right|=4 \\
& \Rightarrow 4\ge \left| {{z}_{2}} \right|-5 \\
\end{align}\]
Adding 5 both sides, we get:
\[\begin{align}
& 4+5\ge \left| {{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{2}} \right|\le 9\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, we have for two complex number ${{z}_{1}}\text{ and }{{z}_{2}}$
\[\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Then, minimum value of \[\left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{z}_{1}} \right|-{{\left| {{z}_{2}} \right|}_{\max }}\]
Minimum value of \[\left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{z}_{1}} \right|-{{\left| {{z}_{2}} \right|}_{\max }}\] from equation (ii) we have ${{\left| {{z}_{2}} \right|}_{\max }}=9$ and given in question is $\left| {{z}_{1}} \right|=9$
Minimum value of \[\Rightarrow \left| {{z}_{1}}-{{z}_{2}} \right|=9-9=0\]
Therefore, the minimum value of \[\left| {{z}_{1}}-{{z}_{2}} \right|=0\] so
So, the correct answer is “Option A”.
Note: If a number is of the form $\left| z \right|\le a$ then minimum value of $\left| z \right|$ is not known but maximum value of $\left| z \right|=a$ this is what we have used for $\max \left| {{z}_{2}} \right|\Rightarrow \left| {{z}_{2}} \right|\le 9$ So, $\max \left( \left| {{z}_{2}} \right| \right)=9$
A key point to note is, at the end of solution where we have used \[\min \left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{z}_{1}} \right|-{{\left| {{z}_{2}} \right|}_{\max }}\]
This is so as if we have a difference of two numbers x-y=a then as larger the value of y, we get the least value of a because subtracting larger value gives least a.
Therefore, the step \[\min \left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{z}_{1}} \right|-{{\left| {{z}_{2}} \right|}_{\max }}\] is correct.
\[\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
We will use the value $\left| {{z}_{2}}-3-4i \right|=4$ in above formula to calculate $\left| {{z}_{2}} \right|$ or least or maximum value of $\left| {{z}_{2}} \right|$. In between this we will use that, if $z=a+ib$ then mode of $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$. After calculating maximum value of $\left| {{z}_{2}} \right|$ we will again apply $\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|$ to calculate minimum value of $\left| {{z}_{1}}-{{z}_{2}} \right|$
Complete step-by-step answer:
We have a property of complex number stated as below:
If ${{Z}_{1}}\text{ and }{{Z}_{2}}$ are two complex numbers then \[\left| {{Z}_{1}}-{{Z}_{2}} \right|\ge \left| {{Z}_{1}} \right|-\left| {{Z}_{2}} \right|\]
We are given ${{z}_{1}}\text{ and }{{z}_{2}}$ two complex numbers and $\left| {{z}_{1}} \right|=9\text{ and }\left| {{z}_{2}}-3-4i \right|=4$
Consider \[\left| {{z}_{2}}-3-4i \right|\]
Taking minus common, we get:
\[\left| {{z}_{2}}-\left( 3+4i \right) \right|\]
Using formula stated above by using ${{Z}_{2}}=\left( 3+4i \right)$ we get:
\[\left| {{z}_{2}}-\left( 3+4i \right) \right|\ge \left| {{z}_{2}} \right|-\left| 3+4i \right|\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
We have a complex number $z=a+ib$ then the mode of z is $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
We have $\left| 3+4i \right|$ applying formula stated above to calculate $\left| 3+4i \right|$ we get:
\[\begin{align}
& \left| 3+4i \right|=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 4 \right)}^{2}}} \\
& \left| 3+4i \right|=\sqrt{9+16} \\
& \left| 3+4i \right|=\sqrt{25} \\
& \left| 3+4i \right|=\pm 5 \\
\end{align}\]
Now, as the LHS of the above equation has mode = negative value is not possible.
\[\Rightarrow \left| 3+4i \right|=\pm 5\]
Using this in equation (i), we get:
\[\left| {{z}_{2}}-\left( 3+4i \right) \right|\ge \left| {{z}_{2}} \right|-5\]
Now, as \[\begin{align}
& \left| {{z}_{2}}-\left( 3+4i \right) \right|=4 \\
& \Rightarrow 4\ge \left| {{z}_{2}} \right|-5 \\
\end{align}\]
Adding 5 both sides, we get:
\[\begin{align}
& 4+5\ge \left| {{z}_{2}} \right| \\
& \Rightarrow \left| {{z}_{2}} \right|\le 9\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, we have for two complex number ${{z}_{1}}\text{ and }{{z}_{2}}$
\[\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|\]
Then, minimum value of \[\left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{z}_{1}} \right|-{{\left| {{z}_{2}} \right|}_{\max }}\]
Minimum value of \[\left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{z}_{1}} \right|-{{\left| {{z}_{2}} \right|}_{\max }}\] from equation (ii) we have ${{\left| {{z}_{2}} \right|}_{\max }}=9$ and given in question is $\left| {{z}_{1}} \right|=9$
Minimum value of \[\Rightarrow \left| {{z}_{1}}-{{z}_{2}} \right|=9-9=0\]
Therefore, the minimum value of \[\left| {{z}_{1}}-{{z}_{2}} \right|=0\] so
So, the correct answer is “Option A”.
Note: If a number is of the form $\left| z \right|\le a$ then minimum value of $\left| z \right|$ is not known but maximum value of $\left| z \right|=a$ this is what we have used for $\max \left| {{z}_{2}} \right|\Rightarrow \left| {{z}_{2}} \right|\le 9$ So, $\max \left( \left| {{z}_{2}} \right| \right)=9$
A key point to note is, at the end of solution where we have used \[\min \left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{z}_{1}} \right|-{{\left| {{z}_{2}} \right|}_{\max }}\]
This is so as if we have a difference of two numbers x-y=a then as larger the value of y, we get the least value of a because subtracting larger value gives least a.
Therefore, the step \[\min \left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{z}_{1}} \right|-{{\left| {{z}_{2}} \right|}_{\max }}\] is correct.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

