
Let ${{z}_{1}}$ and ${{z}_{2}}$ be complex numbers such that ${{z}_{1}}\ne {{z}_{2}}$ and $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|$ . If $\operatorname{Re}\left( {{z}_{1}} \right)>0$ and $\operatorname{Im}\left( {{z}_{2}} \right)<0$ , then $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ is
a. one
b. real and positive
c. real and negative
d. purely imaginary
Answer
605.4k+ views
Hint: When the modulus of two complex numbers is the same then they are either equal or conjugate of each other. In the given problem they are not equal so they are conjugate. The modulus of two complex numbers may be equal but the numbers may not be equal.
Complete step-by-step answer:
A complex number has two parts, real and imaginary. These represent the x and y coordinates of the point being represented by the complex number. The modulus of a complex number $z$ is given by $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$ . Here, we have been given with four conditions for such numbers ${{z}_{1}}\ne {{z}_{2}}$,$\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|$ , $\operatorname{Re}\left( {{z}_{1}} \right)>0$ and $\operatorname{Im}\left( {{z}_{2}} \right)<0$.This means the number ${{z}_{2}}$ is conjugate of number ${{z}_{1}}$ .
Let’s assume the numbers as follow,
${{z}_{1}}=a+ib............(i)$
${{z}_{2}}=a-ib.......(ii)$
Calculating $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ by substituting the values from equation (i) and equation (ii), we get
$\begin{align}
& \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{\left( a+ib \right)+\left( a-ib \right)}{\left( a+ib \right)-\left( a-ib \right)} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{a+ib+a-ib}{a+ib-a+ib} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{2a}{2ib} \\
\end{align}$
Above equation can be represented as,
$\Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{1\times a}{ib}...............(iii)$
As, we know ${{i}^{2}}=-1$ then, \[1={{\left( -1 \right)}^{2}}={{\left( {{i}^{2}} \right)}^{2}}={{\iota }^{4}}\]
Substituting the values in equation (iii), we get
\[\begin{align}
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{{{i}^{4}}\times a}{ib} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{{{i}^{3}}\times a}{b} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{i({{i}^{2}})\times a}{b} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{-a}{b}i \\
\end{align}\]
Hence, the number we got is negative and purely imaginary.
Therefore, $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ is negative and purely imaginary number. This means the final answer is option (d).
Note: The chances of mistakes are if the conjugate of number is not taken correctly or there may be mistakes during the interpretation of the conditions given in the question. One should not get confused with the modulus and the number.
Complete step-by-step answer:
A complex number has two parts, real and imaginary. These represent the x and y coordinates of the point being represented by the complex number. The modulus of a complex number $z$ is given by $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$ . Here, we have been given with four conditions for such numbers ${{z}_{1}}\ne {{z}_{2}}$,$\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|$ , $\operatorname{Re}\left( {{z}_{1}} \right)>0$ and $\operatorname{Im}\left( {{z}_{2}} \right)<0$.This means the number ${{z}_{2}}$ is conjugate of number ${{z}_{1}}$ .
Let’s assume the numbers as follow,
${{z}_{1}}=a+ib............(i)$
${{z}_{2}}=a-ib.......(ii)$
Calculating $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ by substituting the values from equation (i) and equation (ii), we get
$\begin{align}
& \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{\left( a+ib \right)+\left( a-ib \right)}{\left( a+ib \right)-\left( a-ib \right)} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{a+ib+a-ib}{a+ib-a+ib} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{2a}{2ib} \\
\end{align}$
Above equation can be represented as,
$\Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{1\times a}{ib}...............(iii)$
As, we know ${{i}^{2}}=-1$ then, \[1={{\left( -1 \right)}^{2}}={{\left( {{i}^{2}} \right)}^{2}}={{\iota }^{4}}\]
Substituting the values in equation (iii), we get
\[\begin{align}
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{{{i}^{4}}\times a}{ib} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{{{i}^{3}}\times a}{b} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{i({{i}^{2}})\times a}{b} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{-a}{b}i \\
\end{align}\]
Hence, the number we got is negative and purely imaginary.
Therefore, $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ is negative and purely imaginary number. This means the final answer is option (d).
Note: The chances of mistakes are if the conjugate of number is not taken correctly or there may be mistakes during the interpretation of the conditions given in the question. One should not get confused with the modulus and the number.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

