
Let ${{z}_{1}}$ and ${{z}_{2}}$ be complex numbers such that ${{z}_{1}}\ne {{z}_{2}}$ and $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|$ . If $\operatorname{Re}\left( {{z}_{1}} \right)>0$ and $\operatorname{Im}\left( {{z}_{2}} \right)<0$ , then $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ is
a. one
b. real and positive
c. real and negative
d. purely imaginary
Answer
604.5k+ views
Hint: When the modulus of two complex numbers is the same then they are either equal or conjugate of each other. In the given problem they are not equal so they are conjugate. The modulus of two complex numbers may be equal but the numbers may not be equal.
Complete step-by-step answer:
A complex number has two parts, real and imaginary. These represent the x and y coordinates of the point being represented by the complex number. The modulus of a complex number $z$ is given by $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$ . Here, we have been given with four conditions for such numbers ${{z}_{1}}\ne {{z}_{2}}$,$\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|$ , $\operatorname{Re}\left( {{z}_{1}} \right)>0$ and $\operatorname{Im}\left( {{z}_{2}} \right)<0$.This means the number ${{z}_{2}}$ is conjugate of number ${{z}_{1}}$ .
Let’s assume the numbers as follow,
${{z}_{1}}=a+ib............(i)$
${{z}_{2}}=a-ib.......(ii)$
Calculating $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ by substituting the values from equation (i) and equation (ii), we get
$\begin{align}
& \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{\left( a+ib \right)+\left( a-ib \right)}{\left( a+ib \right)-\left( a-ib \right)} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{a+ib+a-ib}{a+ib-a+ib} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{2a}{2ib} \\
\end{align}$
Above equation can be represented as,
$\Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{1\times a}{ib}...............(iii)$
As, we know ${{i}^{2}}=-1$ then, \[1={{\left( -1 \right)}^{2}}={{\left( {{i}^{2}} \right)}^{2}}={{\iota }^{4}}\]
Substituting the values in equation (iii), we get
\[\begin{align}
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{{{i}^{4}}\times a}{ib} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{{{i}^{3}}\times a}{b} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{i({{i}^{2}})\times a}{b} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{-a}{b}i \\
\end{align}\]
Hence, the number we got is negative and purely imaginary.
Therefore, $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ is negative and purely imaginary number. This means the final answer is option (d).
Note: The chances of mistakes are if the conjugate of number is not taken correctly or there may be mistakes during the interpretation of the conditions given in the question. One should not get confused with the modulus and the number.
Complete step-by-step answer:
A complex number has two parts, real and imaginary. These represent the x and y coordinates of the point being represented by the complex number. The modulus of a complex number $z$ is given by $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$ . Here, we have been given with four conditions for such numbers ${{z}_{1}}\ne {{z}_{2}}$,$\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|$ , $\operatorname{Re}\left( {{z}_{1}} \right)>0$ and $\operatorname{Im}\left( {{z}_{2}} \right)<0$.This means the number ${{z}_{2}}$ is conjugate of number ${{z}_{1}}$ .
Let’s assume the numbers as follow,
${{z}_{1}}=a+ib............(i)$
${{z}_{2}}=a-ib.......(ii)$
Calculating $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ by substituting the values from equation (i) and equation (ii), we get
$\begin{align}
& \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{\left( a+ib \right)+\left( a-ib \right)}{\left( a+ib \right)-\left( a-ib \right)} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{a+ib+a-ib}{a+ib-a+ib} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{2a}{2ib} \\
\end{align}$
Above equation can be represented as,
$\Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{1\times a}{ib}...............(iii)$
As, we know ${{i}^{2}}=-1$ then, \[1={{\left( -1 \right)}^{2}}={{\left( {{i}^{2}} \right)}^{2}}={{\iota }^{4}}\]
Substituting the values in equation (iii), we get
\[\begin{align}
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{{{i}^{4}}\times a}{ib} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{{{i}^{3}}\times a}{b} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{i({{i}^{2}})\times a}{b} \\
& \Rightarrow \dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\dfrac{-a}{b}i \\
\end{align}\]
Hence, the number we got is negative and purely imaginary.
Therefore, $\dfrac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}$ is negative and purely imaginary number. This means the final answer is option (d).
Note: The chances of mistakes are if the conjugate of number is not taken correctly or there may be mistakes during the interpretation of the conditions given in the question. One should not get confused with the modulus and the number.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

