
Let \[z = \dfrac{{ - 1 + \sqrt {3i} }}{2}\], where \[i = \sqrt { - 1} \] and \[r,s \in \left\{ {1,2,3} \right\}\]. Let \[P = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right]\] and \[I\] be the identity matrix of order \[2\]. Then the total number of ordered pairs \[\left( {r,s} \right)\] for which \[{P^2} = - I\] is
Answer
490.2k+ views
Hint: Here we are asked to find the number of ordered pairs \[\left( {r,s} \right)\] in total with the given data. For that, we will try to derive the value \[z\] from the given data then we will substitute it in the given matrix \[P\]. The by using the given condition that \[{P^2} = - I\] equating the matrix we got to the identity matrix we will find the possible values of \[s\] & \[r\].
Complete step-by-step solution:
It is given that \[z = \dfrac{{ - 1 + \sqrt {3i} }}{2}\] where, \[i = \sqrt { - 1} \] and also given that \[r,s \in \left\{ {1,2,3} \right\}\]. We aim to find the total number of ordered pairs \[\left( {r,s} \right)\] when \[{P^2} = - I\]where \[P = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right]\] and \[I\] the identity matrix.
Consider the given complex number \[z = \dfrac{{ - 1 + \sqrt {3i} }}{2}\] this can be written as \[z = \cos \dfrac{{2\pi }}{3} + i\sin \dfrac{{2\pi }}{3} = {e^{i\dfrac{{2\pi }}{3}}} = \omega \] where \[\omega \] is the cubic root of unity.
Thus, we got that \[z = \omega \].
Now consider the given matrix \[P = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right]\] and let us find the value of \[{P^2}\] that is \[P \times P\]
\[{P^2} = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right]\]
On multiplying these matrices, we get
\[{P^2} = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\
{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}}
\end{array}} \right]\]
Here we are aiming to find the total number of ordered pairs \[\left( {r,s} \right)\] when \[{P^2} = - I\].
Substituting the values, we have in this condition we get
\[\left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\
{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
\[\left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\
{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right]\]
From the above expression, we get
\[{\left( { - z} \right)^{2r}} + {z^{4s}} = - 1\]
\[{\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0\]
\[{\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0\]
\[{z^{4s}} + {z^{2r}} = - 1\]
From the above set of equations consider the third equation \[{\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0\]
On simplifying this equation, we get \[\left( {{{\left( { - z} \right)}^r} + {z^r}} \right){z^{2s}} = 0\]
We already derived that \[z = \omega \] substituting this in the above equation we get
\[\left( {{{\left( { - \omega } \right)}^r} + {\omega ^r}} \right){\omega ^{2s}} = 0\]
\[ \Rightarrow {\omega ^{2s}} = 0\& {\left( { - \omega } \right)^r} + {\omega ^r} = 0\]
But \[{\omega ^{2s}} \ne 0\] (Since \[\omega \]- cubic root of unity). Therefore, \[{\left( { - \omega } \right)^r} + {\omega ^r} = 0\] when \[r\] is odd thus, \[r = \left\{ {1,3} \right\}\]
Thus, we have found the values of \[r\] now we will find the values of \[s\].
Substituting \[r = \left\{ {1,3} \right\}\] in the equation \[ \Rightarrow {\omega ^{4s}} = - 1 - {\omega ^2}\] we get:
When \[r = 1\],
\[i,j\]
\[ \Rightarrow {\omega ^{4s}} = - 1 - {\left( { - \omega } \right)^2}\]
\[ \Rightarrow {\omega ^{4s}} = - 1 - {\omega ^2}\]
\[ \Rightarrow {\omega ^{4s}} = \omega \]
\[ \Rightarrow s = 1\]
When \[r = 3\],
\[{\left( { - \omega } \right)^6} + {\omega ^{4s}} = - 1\]
\[{\omega ^{4s}} = - 1 - 1\] (Since \[\omega \] is cubic root of unity)
\[{\omega ^{4s}} = - 2\]
This implies that no value \[s\] is possible.
Therefore, \[s = 1\] thus we get, \[\left( {r,s} \right) = \left( {1,1} \right)\]
Therefore, the total number of ordered pairs \[\left( {r,s} \right)\] is only one that is \[\left( {1,1} \right)\].
Note: Points we need to remember that \[\omega \] is the cubic root of unity and we have that \[{\omega ^2} + \omega + 1 = 0\]. When two matrices are equal then their terms will be equal concerning their positions. That is if two matrices are equal \[\left[ A \right] = \left[ B \right]\] then \[{a_{ij}} = {b_{ij}}\] for all \[i,j\].
Complete step-by-step solution:
It is given that \[z = \dfrac{{ - 1 + \sqrt {3i} }}{2}\] where, \[i = \sqrt { - 1} \] and also given that \[r,s \in \left\{ {1,2,3} \right\}\]. We aim to find the total number of ordered pairs \[\left( {r,s} \right)\] when \[{P^2} = - I\]where \[P = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right]\] and \[I\] the identity matrix.
Consider the given complex number \[z = \dfrac{{ - 1 + \sqrt {3i} }}{2}\] this can be written as \[z = \cos \dfrac{{2\pi }}{3} + i\sin \dfrac{{2\pi }}{3} = {e^{i\dfrac{{2\pi }}{3}}} = \omega \] where \[\omega \] is the cubic root of unity.
Thus, we got that \[z = \omega \].
Now consider the given matrix \[P = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right]\] and let us find the value of \[{P^2}\] that is \[P \times P\]
\[{P^2} = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\
{{z^{2s}}}&{{z^r}}
\end{array}} \right]\]
On multiplying these matrices, we get
\[{P^2} = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\
{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}}
\end{array}} \right]\]
Here we are aiming to find the total number of ordered pairs \[\left( {r,s} \right)\] when \[{P^2} = - I\].
Substituting the values, we have in this condition we get
\[\left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\
{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}}
\end{array}} \right] = - \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
\[\left[ {\begin{array}{*{20}{c}}
{{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\
{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right]\]
From the above expression, we get
\[{\left( { - z} \right)^{2r}} + {z^{4s}} = - 1\]
\[{\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0\]
\[{\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0\]
\[{z^{4s}} + {z^{2r}} = - 1\]
From the above set of equations consider the third equation \[{\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0\]
On simplifying this equation, we get \[\left( {{{\left( { - z} \right)}^r} + {z^r}} \right){z^{2s}} = 0\]
We already derived that \[z = \omega \] substituting this in the above equation we get
\[\left( {{{\left( { - \omega } \right)}^r} + {\omega ^r}} \right){\omega ^{2s}} = 0\]
\[ \Rightarrow {\omega ^{2s}} = 0\& {\left( { - \omega } \right)^r} + {\omega ^r} = 0\]
But \[{\omega ^{2s}} \ne 0\] (Since \[\omega \]- cubic root of unity). Therefore, \[{\left( { - \omega } \right)^r} + {\omega ^r} = 0\] when \[r\] is odd thus, \[r = \left\{ {1,3} \right\}\]
Thus, we have found the values of \[r\] now we will find the values of \[s\].
Substituting \[r = \left\{ {1,3} \right\}\] in the equation \[ \Rightarrow {\omega ^{4s}} = - 1 - {\omega ^2}\] we get:
When \[r = 1\],
\[i,j\]
\[ \Rightarrow {\omega ^{4s}} = - 1 - {\left( { - \omega } \right)^2}\]
\[ \Rightarrow {\omega ^{4s}} = - 1 - {\omega ^2}\]
\[ \Rightarrow {\omega ^{4s}} = \omega \]
\[ \Rightarrow s = 1\]
When \[r = 3\],
\[{\left( { - \omega } \right)^6} + {\omega ^{4s}} = - 1\]
\[{\omega ^{4s}} = - 1 - 1\] (Since \[\omega \] is cubic root of unity)
\[{\omega ^{4s}} = - 2\]
This implies that no value \[s\] is possible.
Therefore, \[s = 1\] thus we get, \[\left( {r,s} \right) = \left( {1,1} \right)\]
Therefore, the total number of ordered pairs \[\left( {r,s} \right)\] is only one that is \[\left( {1,1} \right)\].
Note: Points we need to remember that \[\omega \] is the cubic root of unity and we have that \[{\omega ^2} + \omega + 1 = 0\]. When two matrices are equal then their terms will be equal concerning their positions. That is if two matrices are equal \[\left[ A \right] = \left[ B \right]\] then \[{a_{ij}} = {b_{ij}}\] for all \[i,j\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

