
Let \[z\] be the complex number $-1+\sqrt{3}i$.
a) Express ${{z}^{2}}$ in the form of $a+ib$.
Answer
612k+ views
Hint: Various properties of complex numbers are used to solve this problem. The properties used in this problem are:
\[\begin{align}
& \Rightarrow \sqrt{-1}=i \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
Complete Step-by-Step solution:
A complex number $z$ has two parts. A real part and an imaginary part. If $z=x+iy$ is a complex number. Then ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=(x+iy)(x+iy) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}+ixy+ixy+{{i}^{2}}{{y}^{2}}) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}-{{y}^{2}}+i2xy) \\
& \Rightarrow {{z}^{2}}={{x}^{2}}-{{y}^{2}}+i2xy \\
\end{align}$
This means that the real part of ${{z}^{2}}$ is ${{x}^{2}}-{{y}^{2}}$ and the imaginary part of ${{z}^{2}}$ is $2xy$. We will use this property to solve this problem.
The symbol $i$(iota) is used to represent the square root of $\sqrt{-1}$. This also implies, ${{i}^{2}}=-1$, which means $i$ is the solution of the quadratic equation ${{x}^{2}}+1=0$. In this way the square root of any negative number can be expressed using $i$.
$\begin{align}
& \Rightarrow \sqrt{-1}=i.......(i) \\
& \Rightarrow {{i}^{2}}=-1........(ii) \\
\end{align}$
Here we have,
$\Rightarrow z=-1+\sqrt{3}i........(iii)$
Now, ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( -1+i\sqrt{3} \right)\left( -1+i\sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=\left( {{\left( -1 \right)}^{2}}-i\sqrt{3}-i\sqrt{3}+{{i}^{2}}{{\left( \sqrt{3} \right)}^{2}} \right) \\
& \Rightarrow {{z}^{2}}=(1-i2\sqrt{3}+3{{i}^{2}})..........(iv) \\
\end{align}$
In equation (iv) we have ${{i}^{2}}$. From equation (ii) we know that ${{i}^{2}}=-1$. Substituting this in equation (iv) we get equation (iv) as,
$\Rightarrow {{z}^{2}}=(1-i2\sqrt{3}-3)..........(v)$
Now, again simplifying equation (v) we get equation (v) as,
$\Rightarrow {{z}^{2}}=(-2-i2\sqrt{3})..........(vi)$
Here, ${{z}^{2}}$ is expressed as $a+ib$. Where, the real part ,$a=-2$ and the imaginary part, $b=-2\sqrt{3}$.
Hence, if \[z\] is the complex number $-1+\sqrt{3}i$, then ${{z}^{2}}$ expressed in the form of $a+ib$ is $-2-i2\sqrt{3}$.
Therefore, the correct answer is ${{z}^{2}}=-2-i2\sqrt{3}$.
Note: In this problem we can also find the value ${{z}^{2}}$ using the direct formula ${{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy$, where, $z=x+iy$
In this question, $z=-1+\sqrt{3}i$
Directly substituting this we get,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy \\
& \Rightarrow {{z}^{2}}=\left( {{\left( -1 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}} \right)+i\left( 2\times -1\times \sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=(1-3)+i\left( -2\sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=-2-2\sqrt{3}i. \\
\end{align}$
\[\begin{align}
& \Rightarrow \sqrt{-1}=i \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
Complete Step-by-Step solution:
A complex number $z$ has two parts. A real part and an imaginary part. If $z=x+iy$ is a complex number. Then ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=(x+iy)(x+iy) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}+ixy+ixy+{{i}^{2}}{{y}^{2}}) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}-{{y}^{2}}+i2xy) \\
& \Rightarrow {{z}^{2}}={{x}^{2}}-{{y}^{2}}+i2xy \\
\end{align}$
This means that the real part of ${{z}^{2}}$ is ${{x}^{2}}-{{y}^{2}}$ and the imaginary part of ${{z}^{2}}$ is $2xy$. We will use this property to solve this problem.
The symbol $i$(iota) is used to represent the square root of $\sqrt{-1}$. This also implies, ${{i}^{2}}=-1$, which means $i$ is the solution of the quadratic equation ${{x}^{2}}+1=0$. In this way the square root of any negative number can be expressed using $i$.
$\begin{align}
& \Rightarrow \sqrt{-1}=i.......(i) \\
& \Rightarrow {{i}^{2}}=-1........(ii) \\
\end{align}$
Here we have,
$\Rightarrow z=-1+\sqrt{3}i........(iii)$
Now, ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( -1+i\sqrt{3} \right)\left( -1+i\sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=\left( {{\left( -1 \right)}^{2}}-i\sqrt{3}-i\sqrt{3}+{{i}^{2}}{{\left( \sqrt{3} \right)}^{2}} \right) \\
& \Rightarrow {{z}^{2}}=(1-i2\sqrt{3}+3{{i}^{2}})..........(iv) \\
\end{align}$
In equation (iv) we have ${{i}^{2}}$. From equation (ii) we know that ${{i}^{2}}=-1$. Substituting this in equation (iv) we get equation (iv) as,
$\Rightarrow {{z}^{2}}=(1-i2\sqrt{3}-3)..........(v)$
Now, again simplifying equation (v) we get equation (v) as,
$\Rightarrow {{z}^{2}}=(-2-i2\sqrt{3})..........(vi)$
Here, ${{z}^{2}}$ is expressed as $a+ib$. Where, the real part ,$a=-2$ and the imaginary part, $b=-2\sqrt{3}$.
Hence, if \[z\] is the complex number $-1+\sqrt{3}i$, then ${{z}^{2}}$ expressed in the form of $a+ib$ is $-2-i2\sqrt{3}$.
Therefore, the correct answer is ${{z}^{2}}=-2-i2\sqrt{3}$.
Note: In this problem we can also find the value ${{z}^{2}}$ using the direct formula ${{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy$, where, $z=x+iy$
In this question, $z=-1+\sqrt{3}i$
Directly substituting this we get,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy \\
& \Rightarrow {{z}^{2}}=\left( {{\left( -1 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}} \right)+i\left( 2\times -1\times \sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=(1-3)+i\left( -2\sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=-2-2\sqrt{3}i. \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

