
Let \[z\] be the complex number $-1+\sqrt{3}i$.
a) Express ${{z}^{2}}$ in the form of $a+ib$.
Answer
612k+ views
Hint: Various properties of complex numbers are used to solve this problem. The properties used in this problem are:
\[\begin{align}
& \Rightarrow \sqrt{-1}=i \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
Complete Step-by-Step solution:
A complex number $z$ has two parts. A real part and an imaginary part. If $z=x+iy$ is a complex number. Then ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=(x+iy)(x+iy) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}+ixy+ixy+{{i}^{2}}{{y}^{2}}) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}-{{y}^{2}}+i2xy) \\
& \Rightarrow {{z}^{2}}={{x}^{2}}-{{y}^{2}}+i2xy \\
\end{align}$
This means that the real part of ${{z}^{2}}$ is ${{x}^{2}}-{{y}^{2}}$ and the imaginary part of ${{z}^{2}}$ is $2xy$. We will use this property to solve this problem.
The symbol $i$(iota) is used to represent the square root of $\sqrt{-1}$. This also implies, ${{i}^{2}}=-1$, which means $i$ is the solution of the quadratic equation ${{x}^{2}}+1=0$. In this way the square root of any negative number can be expressed using $i$.
$\begin{align}
& \Rightarrow \sqrt{-1}=i.......(i) \\
& \Rightarrow {{i}^{2}}=-1........(ii) \\
\end{align}$
Here we have,
$\Rightarrow z=-1+\sqrt{3}i........(iii)$
Now, ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( -1+i\sqrt{3} \right)\left( -1+i\sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=\left( {{\left( -1 \right)}^{2}}-i\sqrt{3}-i\sqrt{3}+{{i}^{2}}{{\left( \sqrt{3} \right)}^{2}} \right) \\
& \Rightarrow {{z}^{2}}=(1-i2\sqrt{3}+3{{i}^{2}})..........(iv) \\
\end{align}$
In equation (iv) we have ${{i}^{2}}$. From equation (ii) we know that ${{i}^{2}}=-1$. Substituting this in equation (iv) we get equation (iv) as,
$\Rightarrow {{z}^{2}}=(1-i2\sqrt{3}-3)..........(v)$
Now, again simplifying equation (v) we get equation (v) as,
$\Rightarrow {{z}^{2}}=(-2-i2\sqrt{3})..........(vi)$
Here, ${{z}^{2}}$ is expressed as $a+ib$. Where, the real part ,$a=-2$ and the imaginary part, $b=-2\sqrt{3}$.
Hence, if \[z\] is the complex number $-1+\sqrt{3}i$, then ${{z}^{2}}$ expressed in the form of $a+ib$ is $-2-i2\sqrt{3}$.
Therefore, the correct answer is ${{z}^{2}}=-2-i2\sqrt{3}$.
Note: In this problem we can also find the value ${{z}^{2}}$ using the direct formula ${{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy$, where, $z=x+iy$
In this question, $z=-1+\sqrt{3}i$
Directly substituting this we get,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy \\
& \Rightarrow {{z}^{2}}=\left( {{\left( -1 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}} \right)+i\left( 2\times -1\times \sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=(1-3)+i\left( -2\sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=-2-2\sqrt{3}i. \\
\end{align}$
\[\begin{align}
& \Rightarrow \sqrt{-1}=i \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
Complete Step-by-Step solution:
A complex number $z$ has two parts. A real part and an imaginary part. If $z=x+iy$ is a complex number. Then ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=(x+iy)(x+iy) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}+ixy+ixy+{{i}^{2}}{{y}^{2}}) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}-{{y}^{2}}+i2xy) \\
& \Rightarrow {{z}^{2}}={{x}^{2}}-{{y}^{2}}+i2xy \\
\end{align}$
This means that the real part of ${{z}^{2}}$ is ${{x}^{2}}-{{y}^{2}}$ and the imaginary part of ${{z}^{2}}$ is $2xy$. We will use this property to solve this problem.
The symbol $i$(iota) is used to represent the square root of $\sqrt{-1}$. This also implies, ${{i}^{2}}=-1$, which means $i$ is the solution of the quadratic equation ${{x}^{2}}+1=0$. In this way the square root of any negative number can be expressed using $i$.
$\begin{align}
& \Rightarrow \sqrt{-1}=i.......(i) \\
& \Rightarrow {{i}^{2}}=-1........(ii) \\
\end{align}$
Here we have,
$\Rightarrow z=-1+\sqrt{3}i........(iii)$
Now, ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( -1+i\sqrt{3} \right)\left( -1+i\sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=\left( {{\left( -1 \right)}^{2}}-i\sqrt{3}-i\sqrt{3}+{{i}^{2}}{{\left( \sqrt{3} \right)}^{2}} \right) \\
& \Rightarrow {{z}^{2}}=(1-i2\sqrt{3}+3{{i}^{2}})..........(iv) \\
\end{align}$
In equation (iv) we have ${{i}^{2}}$. From equation (ii) we know that ${{i}^{2}}=-1$. Substituting this in equation (iv) we get equation (iv) as,
$\Rightarrow {{z}^{2}}=(1-i2\sqrt{3}-3)..........(v)$
Now, again simplifying equation (v) we get equation (v) as,
$\Rightarrow {{z}^{2}}=(-2-i2\sqrt{3})..........(vi)$
Here, ${{z}^{2}}$ is expressed as $a+ib$. Where, the real part ,$a=-2$ and the imaginary part, $b=-2\sqrt{3}$.
Hence, if \[z\] is the complex number $-1+\sqrt{3}i$, then ${{z}^{2}}$ expressed in the form of $a+ib$ is $-2-i2\sqrt{3}$.
Therefore, the correct answer is ${{z}^{2}}=-2-i2\sqrt{3}$.
Note: In this problem we can also find the value ${{z}^{2}}$ using the direct formula ${{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy$, where, $z=x+iy$
In this question, $z=-1+\sqrt{3}i$
Directly substituting this we get,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy \\
& \Rightarrow {{z}^{2}}=\left( {{\left( -1 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}} \right)+i\left( 2\times -1\times \sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=(1-3)+i\left( -2\sqrt{3} \right) \\
& \Rightarrow {{z}^{2}}=-2-2\sqrt{3}i. \\
\end{align}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

