
Let \[y = {\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3}\]then
A.Min \[y = \dfrac{{{\pi ^3}}}{8}\]
B.Min \[y = \dfrac{{{\pi ^3}}}{{32}}\]
C.Max \[y = \dfrac{{7{\pi ^3}}}{8}\]
D.Max \[y = \dfrac{{7{\pi ^3}}}{{32}}\]
Answer
577.2k+ views
Hint: In this question a trigonometric function is given so first we try to reduce the given trigonometric function in simpler form, then we will put the maximum value of the \[{\sin ^{ - 1}}x\] in the function to find the minimum value and minimum value of the \[{\sin ^{ - 1}}x\] in the function to find the maximum value.
Complete step-by-step answer:
Given the trigonometric function\[y = {\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3} - - (i)\]
We know the cubic formula is given as \[{a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\]
Hence by using the cubic formula we can write the function (i) as
\[y = {\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right)^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right)\]
Now as we know the trigonometric function \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\], hence we can further write the trigonometric function as
\[y = {\left( {\dfrac{\pi }{2}} \right)^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)\]
By further solving this function, we get
\[y = {\dfrac{\pi }{8}^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)\]
Now as we the trigonometric function \[{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x\], hence by using this we can write the function as
\[y = {\dfrac{\pi }{8}^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2} - {{\sin }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)\]
Hence by further solving this, we get
\[
\Rightarrow y = {\dfrac{\pi }{8}^3} - \dfrac{{3{\pi ^2}}}{4}{\sin ^{ - 1}}x + \dfrac{{3\pi }}{2}{\left( {{{\sin }^{ - 1}}x} \right)^2} \\
= \dfrac{{3\pi }}{2}\left( {\dfrac{{{\pi ^2}}}{{12}} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + {{\left( {{{\sin }^{ - 1}}x} \right)}^2}} \right) \\
= \dfrac{{3\pi }}{2}\left( {{{\left( {{{\sin }^{ - 1}}x} \right)}^2} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + \dfrac{{{\pi ^2}}}{{12}}} \right) \\
\]
Now we know the basic square formula is given as \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], so by using this formula
\[y = \dfrac{{3\pi }}{2}\left( {{{\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right)\]
Now to find the minimum value substitute \[{\sin ^{ - 1}}x = \dfrac{\pi }{4}\] (to make square terms zero), hence we get
\[
\Rightarrow {y_{\min }} = \dfrac{{3\pi }}{2}\left( {{{\left( {\dfrac{\pi }{4} - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2}\left( {0 + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2} \times \dfrac{{{\pi ^2}}}{{48}} \\
= \dfrac{{{\pi ^3}}}{{32}} \\
\]
Hence the minimum value of the function \[y = \dfrac{{{\pi ^3}}}{{32}}\]
Now to find the maximum value substitute \[{\sin ^{ - 1}}x = - \dfrac{\pi }{2}\](to make square terms maximum), hence we get
\[
\Rightarrow {y_{\max }} = \dfrac{{3\pi }}{2}\left( {{{\left( { - \dfrac{\pi }{2} - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2}\left( {{{\left( { - \dfrac{{3\pi }}{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2}\left( {\dfrac{{9{\pi ^2}}}{{16}} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2} \times \dfrac{{27{\pi ^2} + {\pi ^2}}}{{48}} \\
= \dfrac{{3\pi }}{2} \times \dfrac{{28{\pi ^2}}}{{48}} \\
= \dfrac{{28{\pi ^3}}}{{32}} \\
= \dfrac{{7{\pi ^3}}}{8} \\
\]
Hence the maximum value of the function is, \[y = \dfrac{{7{\pi ^3}}}{8}\]
So from the multiple options given we can say option B and C both are correct since
Minimum value of the given function is given as:\[y = \dfrac{{{\pi ^3}}}{{32}}\]
Maximum value of the given function is given as:\[y = \dfrac{{7{\pi ^3}}}{8}\]
So, the correct answer is “Option B AND C”.
Note: If the value of the function is increasing regularly then, the function is said to be Monotonically Increasing and the same goes for the monotonically decreasing function. Here, we got the maximum as well as the minimum value of the function at the calculated point of ‘x’.
Complete step-by-step answer:
Given the trigonometric function\[y = {\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3} - - (i)\]
We know the cubic formula is given as \[{a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\]
Hence by using the cubic formula we can write the function (i) as
\[y = {\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right)^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right)\]
Now as we know the trigonometric function \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\], hence we can further write the trigonometric function as
\[y = {\left( {\dfrac{\pi }{2}} \right)^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)\]
By further solving this function, we get
\[y = {\dfrac{\pi }{8}^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)\]
Now as we the trigonometric function \[{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x\], hence by using this we can write the function as
\[y = {\dfrac{\pi }{8}^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2} - {{\sin }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)\]
Hence by further solving this, we get
\[
\Rightarrow y = {\dfrac{\pi }{8}^3} - \dfrac{{3{\pi ^2}}}{4}{\sin ^{ - 1}}x + \dfrac{{3\pi }}{2}{\left( {{{\sin }^{ - 1}}x} \right)^2} \\
= \dfrac{{3\pi }}{2}\left( {\dfrac{{{\pi ^2}}}{{12}} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + {{\left( {{{\sin }^{ - 1}}x} \right)}^2}} \right) \\
= \dfrac{{3\pi }}{2}\left( {{{\left( {{{\sin }^{ - 1}}x} \right)}^2} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + \dfrac{{{\pi ^2}}}{{12}}} \right) \\
\]
Now we know the basic square formula is given as \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], so by using this formula
\[y = \dfrac{{3\pi }}{2}\left( {{{\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right)\]
Now to find the minimum value substitute \[{\sin ^{ - 1}}x = \dfrac{\pi }{4}\] (to make square terms zero), hence we get
\[
\Rightarrow {y_{\min }} = \dfrac{{3\pi }}{2}\left( {{{\left( {\dfrac{\pi }{4} - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2}\left( {0 + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2} \times \dfrac{{{\pi ^2}}}{{48}} \\
= \dfrac{{{\pi ^3}}}{{32}} \\
\]
Hence the minimum value of the function \[y = \dfrac{{{\pi ^3}}}{{32}}\]
Now to find the maximum value substitute \[{\sin ^{ - 1}}x = - \dfrac{\pi }{2}\](to make square terms maximum), hence we get
\[
\Rightarrow {y_{\max }} = \dfrac{{3\pi }}{2}\left( {{{\left( { - \dfrac{\pi }{2} - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2}\left( {{{\left( { - \dfrac{{3\pi }}{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2}\left( {\dfrac{{9{\pi ^2}}}{{16}} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\
= \dfrac{{3\pi }}{2} \times \dfrac{{27{\pi ^2} + {\pi ^2}}}{{48}} \\
= \dfrac{{3\pi }}{2} \times \dfrac{{28{\pi ^2}}}{{48}} \\
= \dfrac{{28{\pi ^3}}}{{32}} \\
= \dfrac{{7{\pi ^3}}}{8} \\
\]
Hence the maximum value of the function is, \[y = \dfrac{{7{\pi ^3}}}{8}\]
So from the multiple options given we can say option B and C both are correct since
Minimum value of the given function is given as:\[y = \dfrac{{{\pi ^3}}}{{32}}\]
Maximum value of the given function is given as:\[y = \dfrac{{7{\pi ^3}}}{8}\]
So, the correct answer is “Option B AND C”.
Note: If the value of the function is increasing regularly then, the function is said to be Monotonically Increasing and the same goes for the monotonically decreasing function. Here, we got the maximum as well as the minimum value of the function at the calculated point of ‘x’.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

