
Let x be the arithmetic mean and y, z be the two geometric mean between any two positive numbers, then $\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}=\_\_\_\_\_$
Answer
585.9k+ views
Hint: Arithmetic mean of two positive numbers a, b is $x=\dfrac{a+b}{2}$. Consider a, y, z, b to be the geometric progression where y and z are geometric mean between a and b. Using this progression find the common ratio, $r={{\left( \dfrac{{{a}_{n}}}{{{a}_{1}}} \right)}^{\dfrac{1}{n-1}}}$ where ${{a}_{1}}$ is the first term, ${{a}_{n}}$ is the last term and $n$ is the total number of terms. Find y and z using $y=ar$ and $z=a{{r}^{2}}$. Substitute the values of x, y and z in $\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}$.
Complete step by step answer:
We are given in question that x is the arithmetic mean and y, z be two geometric mean between any two positive numbers. So let us consider two positive numbers to be a and b.
Then the arithmetic mean of these two numbers will be equal to the sum of a and b divided by 2, where 2 is the total number of terms.
Thus, arithmetic mean, $x=\dfrac{a+b}{2}$
Let y and z are two geometric means between a and b. Since y and z are geometric means they will surely lie between a and b. So a, y, z, b will be in geometric progression (G.P), now we will be calculating common ratio(r).
We know that if ${{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}$ be a sequence of G.P then ${{n}^{th}}$ term sequence is given by ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ where $r$ is the common ratio, ${{a}_{1}}$ is the first term, $n$ is the number of terms.
Therefore, ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ can be written as
$\dfrac{{{a}_{n}}}{{{a}_{1}}}={{r}^{n-1}}$
Now we will take ${{\left( \dfrac{1}{n-1} \right)}^{th}}$ power on both sides we get,
${{\left( \dfrac{{{a}_{n}}}{{{a}_{1}}} \right)}^{\dfrac{1}{n-1}}}=r.........(1)$
We can see that the first term is a, the last term is b and the total number of terms is 4 in G.P a, y, z, b. Then common ratio, r can be calculated using equation (1), thus substituting ${{a}_{1}}=a$, ${{a}_{n}}=b$ and $n=4$ in equation (1) we get
$r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{4-1}}}$
$r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$
In G.P a, y, z, b we see that y is the second term so $y=ar$ using G.P ${{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}$. Thus in $y=ar$substituting the value of $r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$ we get,
$y=a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}........(2)$
In G.P a, y, z, b we see that z is the third term of G.P so $z=a{{r}^{2}}$ using G.P ${{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}$. Thus in $z=a{{r}^{2}}$ substituting the value of $r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$ we get,
$z=a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}.........(3)$
Now putting the values of y and z from equation (2) and (3) in $\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}$we get,
$\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}=\dfrac{{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]}^{3}}+{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}^{3}}}{\left( \dfrac{a+b}{2} \right)\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}$
In the numerator cubing both the terms and in the denominator multiplying the terms $\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]$ we get,
$=\dfrac{{{\left[ {{a}^{3}}\times \left( \dfrac{b}{a} \right) \right]}^{{}}}+\left[ {{a}^{3}}\times {{\left( \dfrac{b}{a} \right)}^{2}} \right]}{\left( \dfrac{a+b}{2} \right)\left[ {{a}^{2}}\times \left( \dfrac{b}{a} \right) \right]}$
$=\dfrac{{{\left[ {{a}^{2}}b \right]}^{{}}}+\left[ a{{b}^{2}} \right]}{\left( \dfrac{a+b}{2} \right)\left[ ab \right]}$
Taking $ab$ common from the numerator we get $ab(a+b)$. The above term gets simplified to,
$=\dfrac{ab(a+b)}{\left( \dfrac{a+b}{2} \right)(ab)}$
In numerator and denominator $(ab)(a+b)$ are common so they get cancelled
$\begin{align}
& =\dfrac{1}{\left( \dfrac{1}{2} \right)} \\
& =2 \\
\end{align}$
Hence the value of $\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}$ is 2.
Note: If ${{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}$ be a sequence of G.P then ${{n}^{th}}$ term sequence is given by ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ where $r$ is the common ratio, ${{a}_{1}}$ is the first term, $n$ is the number of terms.
Therefore, ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ can be written as $\dfrac{{{a}_{n}}}{{{a}_{1}}}={{r}^{n-1}}$ taking $\dfrac{1}{n-1}$power on both sides we get, common ratio as
$r={{\left( \dfrac{{{a}_{n}}}{{{a}_{1}}} \right)}^{\dfrac{1}{n-1}}}$. Care should be taken while evaluating $\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}=\dfrac{{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]}^{3}}+{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}^{3}}}{\left( \dfrac{a+b}{2} \right)\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}$ proper brackets should be given so that confusion is not created.
Complete step by step answer:
We are given in question that x is the arithmetic mean and y, z be two geometric mean between any two positive numbers. So let us consider two positive numbers to be a and b.
Then the arithmetic mean of these two numbers will be equal to the sum of a and b divided by 2, where 2 is the total number of terms.
Thus, arithmetic mean, $x=\dfrac{a+b}{2}$
Let y and z are two geometric means between a and b. Since y and z are geometric means they will surely lie between a and b. So a, y, z, b will be in geometric progression (G.P), now we will be calculating common ratio(r).
We know that if ${{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}$ be a sequence of G.P then ${{n}^{th}}$ term sequence is given by ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ where $r$ is the common ratio, ${{a}_{1}}$ is the first term, $n$ is the number of terms.
Therefore, ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ can be written as
$\dfrac{{{a}_{n}}}{{{a}_{1}}}={{r}^{n-1}}$
Now we will take ${{\left( \dfrac{1}{n-1} \right)}^{th}}$ power on both sides we get,
${{\left( \dfrac{{{a}_{n}}}{{{a}_{1}}} \right)}^{\dfrac{1}{n-1}}}=r.........(1)$
We can see that the first term is a, the last term is b and the total number of terms is 4 in G.P a, y, z, b. Then common ratio, r can be calculated using equation (1), thus substituting ${{a}_{1}}=a$, ${{a}_{n}}=b$ and $n=4$ in equation (1) we get
$r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{4-1}}}$
$r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$
In G.P a, y, z, b we see that y is the second term so $y=ar$ using G.P ${{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}$. Thus in $y=ar$substituting the value of $r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$ we get,
$y=a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}........(2)$
In G.P a, y, z, b we see that z is the third term of G.P so $z=a{{r}^{2}}$ using G.P ${{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}$. Thus in $z=a{{r}^{2}}$ substituting the value of $r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$ we get,
$z=a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}.........(3)$
Now putting the values of y and z from equation (2) and (3) in $\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}$we get,
$\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}=\dfrac{{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]}^{3}}+{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}^{3}}}{\left( \dfrac{a+b}{2} \right)\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}$
In the numerator cubing both the terms and in the denominator multiplying the terms $\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]$ we get,
$=\dfrac{{{\left[ {{a}^{3}}\times \left( \dfrac{b}{a} \right) \right]}^{{}}}+\left[ {{a}^{3}}\times {{\left( \dfrac{b}{a} \right)}^{2}} \right]}{\left( \dfrac{a+b}{2} \right)\left[ {{a}^{2}}\times \left( \dfrac{b}{a} \right) \right]}$
$=\dfrac{{{\left[ {{a}^{2}}b \right]}^{{}}}+\left[ a{{b}^{2}} \right]}{\left( \dfrac{a+b}{2} \right)\left[ ab \right]}$
Taking $ab$ common from the numerator we get $ab(a+b)$. The above term gets simplified to,
$=\dfrac{ab(a+b)}{\left( \dfrac{a+b}{2} \right)(ab)}$
In numerator and denominator $(ab)(a+b)$ are common so they get cancelled
$\begin{align}
& =\dfrac{1}{\left( \dfrac{1}{2} \right)} \\
& =2 \\
\end{align}$
Hence the value of $\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}$ is 2.
Note: If ${{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}$ be a sequence of G.P then ${{n}^{th}}$ term sequence is given by ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ where $r$ is the common ratio, ${{a}_{1}}$ is the first term, $n$ is the number of terms.
Therefore, ${{a}_{n}}={{a}_{1}}{{r}^{n-1}}$ can be written as $\dfrac{{{a}_{n}}}{{{a}_{1}}}={{r}^{n-1}}$ taking $\dfrac{1}{n-1}$power on both sides we get, common ratio as
$r={{\left( \dfrac{{{a}_{n}}}{{{a}_{1}}} \right)}^{\dfrac{1}{n-1}}}$. Care should be taken while evaluating $\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}=\dfrac{{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]}^{3}}+{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}^{3}}}{\left( \dfrac{a+b}{2} \right)\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}$ proper brackets should be given so that confusion is not created.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

