
Let we have a function as $f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}} & \text{ x is an integer} \\
\dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} & \text{ otherwise} \\
\end{matrix} \right.$ then $\displaystyle \lim_{x \to 2}f\left( x \right)$
A. exists only when $K=-1$
B. exists for every real K
C. exists for every real K except $K=1$
D. does not exist
Answer
545.4k+ views
Hint: We first try to find the function and approaching value of the variable $x \to 2$. Then we find the definition of limit and how it applies for the function to find the limit value. The limit only exists when the left-hand and right-hand each limit gives equal value. The mathematical form being $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=f\left( a \right)$. Using the formula, we find the value of K.
Complete step-by-step solution:
We assume the limit of the function $f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}} & \text{ x is an integer} \\
\dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} & \text{ otherwise} \\
\end{matrix} \right.$ exists at $x=2$.
From the theorem we can tell that limit exists only when $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=f\left( a \right)$.
For our given limit the value of variable $x \to 2$. This means the value can be approaching from the both sides of the point of 2. We can break it into three parts of ${{2}^{+}},2,{{2}^{-}}$.
${{2}^{+}}$ represents that the value is approaching from the right-side or greater side of the point and ${{2}^{-}}$ represents that the value is approaching from the left-side or lesser side of the point. There is also the fixed point of 2.
Now the limit value will exist only when $\displaystyle \lim_{x \to {{2}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{2}^{-}}}f\left( x \right)=f\left( 2 \right)$.
$\displaystyle \lim_{x \to {{2}^{+}}}f\left( x \right)={{\left[ \dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} \right]}_{x=2}}={{\left[ -K\left( x+2 \right) \right]}_{x=2}}=-K\left( 2+2 \right)=-4K$
$\displaystyle \lim_{x \to {{2}^{-}}}f\left( x \right)={{\left[ \dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} \right]}_{x=2}}={{\left[ -K\left( x+2 \right) \right]}_{x=2}}=-K\left( 2+2 \right)=-4K$
$f\left( 2 \right)={{2}^{2}}=4$
Therefore, $-4K=4$ if the limit exists which gives that $K=\dfrac{4}{-4}=-1$.
The correct option is A.
Note: The precise definition of a limit is something we use as a proof for the existence of a limit. When we’re evaluating a limit, we’re looking at the function as it approaches a specific point. we approach a particular value of x, the function itself gets closer and closer to a particular value.
Complete step-by-step solution:
We assume the limit of the function $f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}} & \text{ x is an integer} \\
\dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} & \text{ otherwise} \\
\end{matrix} \right.$ exists at $x=2$.
From the theorem we can tell that limit exists only when $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=f\left( a \right)$.
For our given limit the value of variable $x \to 2$. This means the value can be approaching from the both sides of the point of 2. We can break it into three parts of ${{2}^{+}},2,{{2}^{-}}$.
${{2}^{+}}$ represents that the value is approaching from the right-side or greater side of the point and ${{2}^{-}}$ represents that the value is approaching from the left-side or lesser side of the point. There is also the fixed point of 2.
Now the limit value will exist only when $\displaystyle \lim_{x \to {{2}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{2}^{-}}}f\left( x \right)=f\left( 2 \right)$.
$\displaystyle \lim_{x \to {{2}^{+}}}f\left( x \right)={{\left[ \dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} \right]}_{x=2}}={{\left[ -K\left( x+2 \right) \right]}_{x=2}}=-K\left( 2+2 \right)=-4K$
$\displaystyle \lim_{x \to {{2}^{-}}}f\left( x \right)={{\left[ \dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} \right]}_{x=2}}={{\left[ -K\left( x+2 \right) \right]}_{x=2}}=-K\left( 2+2 \right)=-4K$
$f\left( 2 \right)={{2}^{2}}=4$
Therefore, $-4K=4$ if the limit exists which gives that $K=\dfrac{4}{-4}=-1$.
The correct option is A.
Note: The precise definition of a limit is something we use as a proof for the existence of a limit. When we’re evaluating a limit, we’re looking at the function as it approaches a specific point. we approach a particular value of x, the function itself gets closer and closer to a particular value.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

