
Let we have a binomial expression \[{{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}={{A}_{0}}+{{A}_{1}}x+{{A}_{2}}{{x}^{2}}.......\] If ${{A}_{0}},{{A}_{1}},{{A}_{2}}$ are in A.P, then the value of n
Answer
586.2k+ views
Hint: We will find the value of ${{A}_{0}},{{A}_{1}},{{A}_{2}}$ as we know the relation between them. We will calculate the value of $A_0$ by putting $x=0$ in the given equation. We will now differentiate the given equation w.r.t x and put $x=0$, we will get the value of $A_1$. We will double differentiate the equation w.r.t x and put $x=0$ and we will get the value of $A_2$. We know that if three numbers a, b, c are in A.P then $2b= a+c$ we will apply this relation to get the value of n.
Complete step-by-step solution:
We have the equation \[{{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}={{A}_{0}}+{{A}_{1}}x+{{A}_{2}}{{x}^{2}}.......\]
We will now put x=0 in the above equation, we will get,
$\begin{align}
& \Rightarrow {{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}={{A}_{0}}+{{A}_{1}}x+{{A}_{2}}{{x}^{2}}....... \\
& \Rightarrow {{\left( 1+0 \right)}^{2}}{{\left( 1+0 \right)}^{n}}={{A}_{0}} \\
& \Rightarrow {{A}_{0}}=1 \\
\end{align}$
We will now differentiate the given equation w.r.t x
$\begin{align}
& \Rightarrow {{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}={{A}_{0}}+{{A}_{1}}x+{{A}_{2}}{{x}^{2}}....... \\
& \Rightarrow \dfrac{d{{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}}{dx}=0+{{A}_{1}}+2{{A}_{2}}x \\
\end{align}$
We apply product rule in LHS, which is given by
$\begin{align}
& \Rightarrow \dfrac{d(uv)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx} \\
& \Rightarrow \dfrac{d{{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}}{dx}={{(1+{{x}^{2}})}^{2}}\dfrac{d{{(1+x)}^{n}}}{dx}+{{(1+x)}^{n}}\dfrac{d{{(1+{{x}^{2}})}^{2}}}{dx} \\
& \Rightarrow {{(1+{{x}^{2}})}^{2}}\times n{{(1+x)}^{n-1}}+{{(1+x)}^{n}}\times 2(1+{{x}^{2}})\times 2x \\
& \Rightarrow {{(1+{{x}^{2}})}^{2}}\times n{{(1+x)}^{n-1}}+{{(1+x)}^{n}}\times 2(1+{{x}^{2}})\times 2x={{A}_{1}}+2x{{A}_{2}}...........(i) \\
\end{align}$
We will put x=0, we will get,
$\begin{align}
& \Rightarrow {{(1+{{0}^{2}})}^{2}}\times n{{(1+0)}^{n-1}}+{{(1+0)}^{n}}\times 2(1+{{0}^{2}})\times 2\times 0={{A}_{1}}+2\times 0\times {{A}_{2}} \\
& \Rightarrow {{A}_{1}}=n \\
\end{align}$
We will now differentiate equation(i) w.r.t x, we will get
$\Rightarrow \dfrac{d}{dx}\left( {{(1+{{x}^{2}})}^{2}}\times n{{(1+x)}^{n-1}} \right)+\dfrac{d}{dx}\left( {{(1+x)}^{n}}\times 2(1+{{x}^{2}})\times 2x \right)=0+2{{A}_{2}}$
We apply product rule in LHS, which is given by
\[\begin{align}
& \Rightarrow \dfrac{d(uv)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx} \\
& \Rightarrow \dfrac{d}{dx}\left( {{(1+{{x}^{2}})}^{2}}\times n{{(1+x)}^{n-1}} \right)+\dfrac{d}{dx}\left( {{(1+x)}^{n}}\times 2(1+{{x}^{2}})\times 2x \right) \\
& \Rightarrow {{(1+{{x}^{2}})}^{2}}\dfrac{d}{dx}\left( n{{(1+x)}^{n-1}} \right)+n{{(1+x)}^{n-1}}\dfrac{d}{dx}\left( {{(1+{{x}^{2}})}^{2}} \right)+{{(1+x)}^{n}}\dfrac{d}{dx}\left( 4x(1+{{x}^{2}}) \right)+4x(1+{{x}^{2}})\dfrac{d}{dx}\left( {{(1+x)}^{n}} \right) \\
& \Rightarrow {{(1+{{x}^{2}})}^{2}}\times n(n-1){{(1+x)}^{n-2}}+n{{(1+x)}^{n-1}}\times 4x(1+{{x}^{2}})+{{(1+x)}^{n}}\times 4(1+3{{x}^{2}})+4x(1+{{x}^{2}})\times n{{(1+x)}^{n-1}} \\
\end{align}\]
We will now put x=0, we will get
$\begin{align}
& \Rightarrow n\left( n-1 \right)+4 \\
& \Rightarrow 2{{A}_{2}}=n\left( n-1 \right)+4 \\
& \Rightarrow {{A}_{2}}=\dfrac{n\left( n-1 \right)+4}{2} \\
\end{align}$
We know that ${{A}_{0}},{{A}_{1}},{{A}_{2}}$ are in A.P
$\begin{align}
& \Rightarrow 2{{A}_{1}}={{A}_{0}}+{{A}_{2}} \\
& \Rightarrow 2n=1+\dfrac{n(n-1)+4}{2} \\
& \Rightarrow 4n=2+{{n}^{2}}-n+4 \\
& \Rightarrow {{n}^{2}}-5n+6=0 \\
\end{align}$
We will now solve the above equation to get the value of x
$\begin{align}
& \Rightarrow {{n}^{2}}-5n+6=0 \\
& \Rightarrow {{n}^{2}}-3n-2n+6=0 \\
& \Rightarrow n(n-3)-2(n-3)=0 \\
& \Rightarrow (n-2)(n-3)=0 \\
& \Rightarrow n=2,3 \\
\end{align}$
So, The value of n can be 2 and 3.
Note: Caution should be taken to avoid mistakes while solving the differentiation as it gets confusing at times with many terms in it. While solving differentiation the signs should be kept in mind. No, need to simplify the LHS side as it will take a lot of time and we only require the value of ${{A}_{0}},{{A}_{1}},{{A}_{2}}$ which we will get by putting $x=0$, so of the terms will get eliminated. If the three numbers a, b, c are in A.P then the common difference between the numbers is the same which means $b-a = c-b$.
Complete step-by-step solution:
We have the equation \[{{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}={{A}_{0}}+{{A}_{1}}x+{{A}_{2}}{{x}^{2}}.......\]
We will now put x=0 in the above equation, we will get,
$\begin{align}
& \Rightarrow {{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}={{A}_{0}}+{{A}_{1}}x+{{A}_{2}}{{x}^{2}}....... \\
& \Rightarrow {{\left( 1+0 \right)}^{2}}{{\left( 1+0 \right)}^{n}}={{A}_{0}} \\
& \Rightarrow {{A}_{0}}=1 \\
\end{align}$
We will now differentiate the given equation w.r.t x
$\begin{align}
& \Rightarrow {{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}={{A}_{0}}+{{A}_{1}}x+{{A}_{2}}{{x}^{2}}....... \\
& \Rightarrow \dfrac{d{{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}}{dx}=0+{{A}_{1}}+2{{A}_{2}}x \\
\end{align}$
We apply product rule in LHS, which is given by
$\begin{align}
& \Rightarrow \dfrac{d(uv)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx} \\
& \Rightarrow \dfrac{d{{(1+{{x}^{2}})}^{2}}{{(1+x)}^{n}}}{dx}={{(1+{{x}^{2}})}^{2}}\dfrac{d{{(1+x)}^{n}}}{dx}+{{(1+x)}^{n}}\dfrac{d{{(1+{{x}^{2}})}^{2}}}{dx} \\
& \Rightarrow {{(1+{{x}^{2}})}^{2}}\times n{{(1+x)}^{n-1}}+{{(1+x)}^{n}}\times 2(1+{{x}^{2}})\times 2x \\
& \Rightarrow {{(1+{{x}^{2}})}^{2}}\times n{{(1+x)}^{n-1}}+{{(1+x)}^{n}}\times 2(1+{{x}^{2}})\times 2x={{A}_{1}}+2x{{A}_{2}}...........(i) \\
\end{align}$
We will put x=0, we will get,
$\begin{align}
& \Rightarrow {{(1+{{0}^{2}})}^{2}}\times n{{(1+0)}^{n-1}}+{{(1+0)}^{n}}\times 2(1+{{0}^{2}})\times 2\times 0={{A}_{1}}+2\times 0\times {{A}_{2}} \\
& \Rightarrow {{A}_{1}}=n \\
\end{align}$
We will now differentiate equation(i) w.r.t x, we will get
$\Rightarrow \dfrac{d}{dx}\left( {{(1+{{x}^{2}})}^{2}}\times n{{(1+x)}^{n-1}} \right)+\dfrac{d}{dx}\left( {{(1+x)}^{n}}\times 2(1+{{x}^{2}})\times 2x \right)=0+2{{A}_{2}}$
We apply product rule in LHS, which is given by
\[\begin{align}
& \Rightarrow \dfrac{d(uv)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx} \\
& \Rightarrow \dfrac{d}{dx}\left( {{(1+{{x}^{2}})}^{2}}\times n{{(1+x)}^{n-1}} \right)+\dfrac{d}{dx}\left( {{(1+x)}^{n}}\times 2(1+{{x}^{2}})\times 2x \right) \\
& \Rightarrow {{(1+{{x}^{2}})}^{2}}\dfrac{d}{dx}\left( n{{(1+x)}^{n-1}} \right)+n{{(1+x)}^{n-1}}\dfrac{d}{dx}\left( {{(1+{{x}^{2}})}^{2}} \right)+{{(1+x)}^{n}}\dfrac{d}{dx}\left( 4x(1+{{x}^{2}}) \right)+4x(1+{{x}^{2}})\dfrac{d}{dx}\left( {{(1+x)}^{n}} \right) \\
& \Rightarrow {{(1+{{x}^{2}})}^{2}}\times n(n-1){{(1+x)}^{n-2}}+n{{(1+x)}^{n-1}}\times 4x(1+{{x}^{2}})+{{(1+x)}^{n}}\times 4(1+3{{x}^{2}})+4x(1+{{x}^{2}})\times n{{(1+x)}^{n-1}} \\
\end{align}\]
We will now put x=0, we will get
$\begin{align}
& \Rightarrow n\left( n-1 \right)+4 \\
& \Rightarrow 2{{A}_{2}}=n\left( n-1 \right)+4 \\
& \Rightarrow {{A}_{2}}=\dfrac{n\left( n-1 \right)+4}{2} \\
\end{align}$
We know that ${{A}_{0}},{{A}_{1}},{{A}_{2}}$ are in A.P
$\begin{align}
& \Rightarrow 2{{A}_{1}}={{A}_{0}}+{{A}_{2}} \\
& \Rightarrow 2n=1+\dfrac{n(n-1)+4}{2} \\
& \Rightarrow 4n=2+{{n}^{2}}-n+4 \\
& \Rightarrow {{n}^{2}}-5n+6=0 \\
\end{align}$
We will now solve the above equation to get the value of x
$\begin{align}
& \Rightarrow {{n}^{2}}-5n+6=0 \\
& \Rightarrow {{n}^{2}}-3n-2n+6=0 \\
& \Rightarrow n(n-3)-2(n-3)=0 \\
& \Rightarrow (n-2)(n-3)=0 \\
& \Rightarrow n=2,3 \\
\end{align}$
So, The value of n can be 2 and 3.
Note: Caution should be taken to avoid mistakes while solving the differentiation as it gets confusing at times with many terms in it. While solving differentiation the signs should be kept in mind. No, need to simplify the LHS side as it will take a lot of time and we only require the value of ${{A}_{0}},{{A}_{1}},{{A}_{2}}$ which we will get by putting $x=0$, so of the terms will get eliminated. If the three numbers a, b, c are in A.P then the common difference between the numbers is the same which means $b-a = c-b$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

