
Let w be a complex cube root of unity with ω ≠ 1. A fair die is thrown three times. If $ {{\text{r}}_1},{\text{ }}{{\text{r}}_2}{\text{ and }}{{\text{r}}_3} $ are the numbers obtained on the die then the probability that $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $ is
$
{\text{A}}{\text{. }}\dfrac{1}{{18}} \\
{\text{B}}{\text{. }}\dfrac{1}{9} \\
{\text{C}}{\text{. }}\dfrac{2}{9} \\
{\text{D}}{\text{. }}\dfrac{1}{{36}} \\
$
Answer
616.2k+ views
Hint: In order to find the probability we use the condition of cube roots of unity, then we compute the possibilities of $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $ and then apply the formula of probability to find the answer.
We will use one property of cube root of unity i.e. $ 1 + \omega + {\omega ^2} = 0 $
Complete step-by-step answer:
Given Data, $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $
The total number of outcomes when a fair die is rolled 3 times is 6 × 6 × 6 = 216.
Cube root of unity is bound by a condition:- $ 1 + \omega + {\omega ^2} = 0 $
The numbers of the die are 1, 2, 3, 4, 5 and 6.
The numbers are of the form 3k, 3k+1 and 3k+2, i.e.
3k --- 3 and 6
3k+1 --- 1 and 4
3k+2 --- 2 and 5
Let $ {{\text{r}}_1} $ ϵ 3k, $ {{\text{r}}_2} $ ϵ 3k+1 and $ {{\text{r}}_3} $ ϵ 3k+2
Now $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $ ,
$
\Rightarrow {\omega ^{{\text{3k}}}} + {\omega ^{{\text{3k + 1}}}} + {\omega ^{{\text{3k + 2}}}} \\
\Rightarrow {\omega ^{{\text{3k}}}}\left( {1 + \omega + {\omega ^2}} \right) \\
\Rightarrow 0 \\
$ --- As we know $ 1 + \omega + {\omega ^2} = 0 $
Hence $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $ is true, only if $ {{\text{r}}_1} $ ϵ 3k, $ {{\text{r}}_2} $ ϵ 3k+1 and $ {{\text{r}}_3} $ ϵ 3k+2.
Now the number of favorable outcomes =
We can arrange each of the elements from $ {{\text{r}}_1} $ , $ {{\text{r}}_2} $ and $ {{\text{r}}_3} $ in $ {}^2{{\text{C}}_1} $ × $ {}^2{{\text{C}}_1} $ × $ {}^2{{\text{C}}_1} $ ways.
And we can arrange $ {{\text{r}}_1} $ , $ {{\text{r}}_2} $ and $ {{\text{r}}_3} $ in 3! Ways.
(As we know we can arrange n terms in n! ways and n! = n (n-1) (n-2)…… (n - (n-1))).
Hence the number of favorable ways = 3! × $ {}^2{{\text{C}}_1} $ × $ {}^2{{\text{C}}_1} $ × $ {}^2{{\text{C}}_1} $
= 6 × 2 × 2 × 2
= 48.
Hence the probability that $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $ is $ \dfrac{{{\text{number of favorable ways}}}}{{{\text{total number of possibilities}}}} $
⟹Probability = $ \dfrac{{48}}{{216}} = \dfrac{2}{9} $
Hence Option C is the correct answer.
Note – In order to solve this type of problems the key is to have enough knowledge in the cube roots of unity and its condition. A fair dice has 6 possible outcomes when rolled once. It is important to identify that picking a term from each of $ {{\text{r}}_1} $ , $ {{\text{r}}_2} $ and $ {{\text{r}}_3} $ is a combination but not a permutation, also while finding the favorable possibilities we must remember to consider the possibilities of arranging $ {{\text{r}}_1} $ , $ {{\text{r}}_2} $ and $ {{\text{r}}_3} $ respectively.
We will use one property of cube root of unity i.e. $ 1 + \omega + {\omega ^2} = 0 $
Complete step-by-step answer:
Given Data, $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $
The total number of outcomes when a fair die is rolled 3 times is 6 × 6 × 6 = 216.
Cube root of unity is bound by a condition:- $ 1 + \omega + {\omega ^2} = 0 $
The numbers of the die are 1, 2, 3, 4, 5 and 6.
The numbers are of the form 3k, 3k+1 and 3k+2, i.e.
3k --- 3 and 6
3k+1 --- 1 and 4
3k+2 --- 2 and 5
Let $ {{\text{r}}_1} $ ϵ 3k, $ {{\text{r}}_2} $ ϵ 3k+1 and $ {{\text{r}}_3} $ ϵ 3k+2
Now $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $ ,
$
\Rightarrow {\omega ^{{\text{3k}}}} + {\omega ^{{\text{3k + 1}}}} + {\omega ^{{\text{3k + 2}}}} \\
\Rightarrow {\omega ^{{\text{3k}}}}\left( {1 + \omega + {\omega ^2}} \right) \\
\Rightarrow 0 \\
$ --- As we know $ 1 + \omega + {\omega ^2} = 0 $
Hence $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $ is true, only if $ {{\text{r}}_1} $ ϵ 3k, $ {{\text{r}}_2} $ ϵ 3k+1 and $ {{\text{r}}_3} $ ϵ 3k+2.
Now the number of favorable outcomes =
We can arrange each of the elements from $ {{\text{r}}_1} $ , $ {{\text{r}}_2} $ and $ {{\text{r}}_3} $ in $ {}^2{{\text{C}}_1} $ × $ {}^2{{\text{C}}_1} $ × $ {}^2{{\text{C}}_1} $ ways.
And we can arrange $ {{\text{r}}_1} $ , $ {{\text{r}}_2} $ and $ {{\text{r}}_3} $ in 3! Ways.
(As we know we can arrange n terms in n! ways and n! = n (n-1) (n-2)…… (n - (n-1))).
Hence the number of favorable ways = 3! × $ {}^2{{\text{C}}_1} $ × $ {}^2{{\text{C}}_1} $ × $ {}^2{{\text{C}}_1} $
= 6 × 2 × 2 × 2
= 48.
Hence the probability that $ {\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 $ is $ \dfrac{{{\text{number of favorable ways}}}}{{{\text{total number of possibilities}}}} $
⟹Probability = $ \dfrac{{48}}{{216}} = \dfrac{2}{9} $
Hence Option C is the correct answer.
Note – In order to solve this type of problems the key is to have enough knowledge in the cube roots of unity and its condition. A fair dice has 6 possible outcomes when rolled once. It is important to identify that picking a term from each of $ {{\text{r}}_1} $ , $ {{\text{r}}_2} $ and $ {{\text{r}}_3} $ is a combination but not a permutation, also while finding the favorable possibilities we must remember to consider the possibilities of arranging $ {{\text{r}}_1} $ , $ {{\text{r}}_2} $ and $ {{\text{r}}_3} $ respectively.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

