
Let \[\vec a = \hat i + \hat j + \hat k\], \[\vec b = \hat i - \hat j + \hat k\] and \[\vec c = \hat i - \hat j - \hat k\] be three vectors. A vector \[\vec v\] of the form \[\vec a + \lambda \vec b\] for some scalar \[\lambda \] whose projection on \[\vec c\] is \[\dfrac{1}{{\sqrt 3 }}\], is given by
A. \[\hat i - 3\hat j + \hat k\]
B. \[ - 3\hat i - 3\hat j - \hat k\]
C. \[3\hat i - \hat j + 3\hat k\]
D. \[\hat i + 3\hat j - 3\hat k\]
Answer
562.8k+ views
Hint: We should use the formula for the projection of one vector on the other vector. We can also use the formula for the dot product of the two vectors. Using the given values of the vectors \[\vec a\] and \[\vec b\], solve the vector \[\vec v\]. Then solve the formula for the projection of the vector \[\vec v\] on the vector \[\vec c\] and calculate the value of lambda. Substitute this value of lambda in the solved expression for.
Formulae used:
The projection of a vector \[\vec a\] on the vector \[\vec b\] is given by
\[\vec X = \dfrac{{\vec a \cdot \vec b}}{{\left| {\vec b} \right|}}\] …… (1)
The dot product of the two vectors \[\vec a\] and \[\vec b\] is given by
\[\vec a \cdot \vec b = {a_x}{b_x} + {a_y}{b_y} + {a_z}{b_z}\] …… (2)
Complete step by step answer:
We have given three vectors as
\[\vec a = \hat i + \hat j + \hat k\]
\[\Rightarrow \vec b = \hat i - \hat j + \hat k\]
\[\Rightarrow \vec c = \hat i - \hat j - \hat k\]
We have also given that the vector \[\vec v\] is given by
\[\vec v = \vec a + \lambda \vec b\]
Substitute \[\hat i + \hat j + \hat k\] for \[\vec a\] and \[\hat i - \hat j + \hat k\] for \[\vec b\] in the above equation.
\[\vec v = \left( {\hat i + \hat j + \hat k} \right) + \lambda \left( {\hat i - \hat j + \hat k} \right)\]
\[ \Rightarrow \vec v = \left( {\hat i + \hat j + \hat k} \right) + \left( {\lambda \hat i - \lambda \hat j + \lambda \hat k} \right)\]
\[ \Rightarrow \vec v = \left( {1 + \lambda } \right)\hat i + \left( {1 - \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k\] …… (3)
We have given that the projection of the vector \[\vec v\] on the vector \[\vec c\] is \[\dfrac{1}{{\sqrt 3 }}\].
According to equation, we can write
\[\dfrac{{\vec v \cdot \vec c}}{{\left| {\vec c} \right|}} = \dfrac{1}{{\sqrt 3 }}\] …… (4)
Let us first calculate the dot product of the vectors \[\vec v\] and \[\vec c\].
\[\vec v \cdot \vec c = \left[ {\left( {1 + \lambda } \right)\hat i + \left( {1 - \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k} \right] \cdot \left( {\hat i - \hat j - \hat k} \right)\]
\[ \Rightarrow \vec v \cdot \vec c = \left( {1 + \lambda } \right) - \left( {1 - \lambda } \right) - \left( {1 + \lambda } \right)\]
\[ \Rightarrow \vec v \cdot \vec c = \lambda - 1\]
Let now calculate the magnitude of the vector \[\vec c\].
\[\left| {\vec c} \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} \]
\[ \Rightarrow \left| {\vec c} \right| = \sqrt {1 + 1 + 1} \]
\[ \Rightarrow \left| {\vec c} \right| = \sqrt 3 \]
Substitute \[\lambda - 1\] for \[\vec v \cdot \vec c\] and \[\sqrt 3 \] for \[\left| {\vec c} \right|\] in equation (4).
\[\dfrac{{\lambda - 1}}{{\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow \lambda - 1 = 1\]
\[ \Rightarrow \lambda = 2\]
Let now determine the vector \[\vec v\].Substitute \[2\] for \[\lambda \] in equation (5).
\[ \Rightarrow \vec v = \left( {1 + 2} \right)\hat i + \left( {1 - 2} \right)\hat j + \left( {1 + 2} \right)\hat k\]
\[ \therefore \vec v = 3\hat i - \hat j + 3\hat k\]
Therefore, the value of the required vector is \[3\hat i - \hat j + 3\hat k\].
Hence, the correct option is C.
Note: The students should be careful while solving the expressions in the vector form because the mistake in only the sign of the components of the unit vectors in X, Y or Z direction can make the whole solution wrong and we will end with a wrong answer. Hence, the students should be careful while performing calculations.
Formulae used:
The projection of a vector \[\vec a\] on the vector \[\vec b\] is given by
\[\vec X = \dfrac{{\vec a \cdot \vec b}}{{\left| {\vec b} \right|}}\] …… (1)
The dot product of the two vectors \[\vec a\] and \[\vec b\] is given by
\[\vec a \cdot \vec b = {a_x}{b_x} + {a_y}{b_y} + {a_z}{b_z}\] …… (2)
Complete step by step answer:
We have given three vectors as
\[\vec a = \hat i + \hat j + \hat k\]
\[\Rightarrow \vec b = \hat i - \hat j + \hat k\]
\[\Rightarrow \vec c = \hat i - \hat j - \hat k\]
We have also given that the vector \[\vec v\] is given by
\[\vec v = \vec a + \lambda \vec b\]
Substitute \[\hat i + \hat j + \hat k\] for \[\vec a\] and \[\hat i - \hat j + \hat k\] for \[\vec b\] in the above equation.
\[\vec v = \left( {\hat i + \hat j + \hat k} \right) + \lambda \left( {\hat i - \hat j + \hat k} \right)\]
\[ \Rightarrow \vec v = \left( {\hat i + \hat j + \hat k} \right) + \left( {\lambda \hat i - \lambda \hat j + \lambda \hat k} \right)\]
\[ \Rightarrow \vec v = \left( {1 + \lambda } \right)\hat i + \left( {1 - \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k\] …… (3)
We have given that the projection of the vector \[\vec v\] on the vector \[\vec c\] is \[\dfrac{1}{{\sqrt 3 }}\].
According to equation, we can write
\[\dfrac{{\vec v \cdot \vec c}}{{\left| {\vec c} \right|}} = \dfrac{1}{{\sqrt 3 }}\] …… (4)
Let us first calculate the dot product of the vectors \[\vec v\] and \[\vec c\].
\[\vec v \cdot \vec c = \left[ {\left( {1 + \lambda } \right)\hat i + \left( {1 - \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k} \right] \cdot \left( {\hat i - \hat j - \hat k} \right)\]
\[ \Rightarrow \vec v \cdot \vec c = \left( {1 + \lambda } \right) - \left( {1 - \lambda } \right) - \left( {1 + \lambda } \right)\]
\[ \Rightarrow \vec v \cdot \vec c = \lambda - 1\]
Let now calculate the magnitude of the vector \[\vec c\].
\[\left| {\vec c} \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} \]
\[ \Rightarrow \left| {\vec c} \right| = \sqrt {1 + 1 + 1} \]
\[ \Rightarrow \left| {\vec c} \right| = \sqrt 3 \]
Substitute \[\lambda - 1\] for \[\vec v \cdot \vec c\] and \[\sqrt 3 \] for \[\left| {\vec c} \right|\] in equation (4).
\[\dfrac{{\lambda - 1}}{{\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow \lambda - 1 = 1\]
\[ \Rightarrow \lambda = 2\]
Let now determine the vector \[\vec v\].Substitute \[2\] for \[\lambda \] in equation (5).
\[ \Rightarrow \vec v = \left( {1 + 2} \right)\hat i + \left( {1 - 2} \right)\hat j + \left( {1 + 2} \right)\hat k\]
\[ \therefore \vec v = 3\hat i - \hat j + 3\hat k\]
Therefore, the value of the required vector is \[3\hat i - \hat j + 3\hat k\].
Hence, the correct option is C.
Note: The students should be careful while solving the expressions in the vector form because the mistake in only the sign of the components of the unit vectors in X, Y or Z direction can make the whole solution wrong and we will end with a wrong answer. Hence, the students should be careful while performing calculations.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

