
Let the value of f(x) be \[{{f}_{k}}x=\dfrac{1}{k}\left( \text{si}{{\text{n}}^{\text{k}}}\text{x+co}{{\text{s}}^{\text{k}}}\text{x} \right)\] where $x\in R\text{ and R}\ge \text{1}$ then the value of ${{f}_{4}}(x)-{{f}_{6}}(x)$ equals to
\[\begin{align}
& A.\dfrac{1}{6} \\
& B.\dfrac{1}{3} \\
& C.\dfrac{1}{4} \\
& D.\dfrac{1}{12} \\
\end{align}\]
Answer
577.8k+ views
Hint: To solve this question, we will first calculate the value of ${{f}_{4}}(x)$ and value of ${{f}_{6}}(x)$ then subtract them. In between we will use the identity as \[\left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\text{ and }{{\text{a}}^{\text{3}}}\text{+}{{\text{b}}^{\text{3}}}\text{=}{{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Complete step by step answer:
Given that, \[{{f}_{k}}x=\dfrac{1}{k}\left( \text{si}{{\text{n}}^{\text{k}}}\text{x+co}{{\text{s}}^{\text{k}}}\text{x} \right)\]
Where $x\in R\text{ and R}\ge \text{1}$
Consider k = 4 in above equation, we get:
\[{{f}_{4}}x=\dfrac{1}{4}\left( \text{si}{{\text{n}}^{4}}\text{x+co}{{\text{s}}^{4}}\text{x} \right)\]
We have a identity given as \[\left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\]
Let \[a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{\text{2}}}\text{x}\] and using identity stated above, we get:
\[{{f}_{4}}x=\dfrac{1}{4}\left\{ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{2}}-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, we have trigonometric identity given as:
\[\text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x}=1\]
Using this above, we get:
\[\begin{align}
& {{f}_{4}}x=\dfrac{1}{4}\left\{ 1-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\} \\
& \Rightarrow {{f}_{4}}x=\dfrac{1}{4}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \\
\end{align}\]
Similarly, we will now calculate the value of ${{f}_{6}}(x)$
\[{{f}_{6}}x=\dfrac{1}{6}\left( \text{si}{{\text{n}}^{6}}\text{x+co}{{\text{s}}^{6}}\text{x} \right)\]
Now, we have an identity as \[{{\text{a}}^{\text{3}}}\text{+}{{\text{b}}^{\text{3}}}\text{=}{{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Let, \[a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{\text{2}}}\text{x}\]
Using this in above, we get:
\[{{f}_{6}}x=\dfrac{1}{6}\left[ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{3}}-3\text{co}{{\text{s}}^{2}}\text{xsi}{{\text{n}}^{2}}\text{x}\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right) \right]\]
We have value of \[\text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x}=1\]
Using this in above, we get:
\[\begin{align}
& {{f}_{6}}x=\dfrac{1}{6}\left[ 1-3\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right] \\
& \Rightarrow {{f}_{6}}x=\dfrac{1}{6}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, from equation (i) and (ii) we get:
\[{{f}_{4}}x-{{f}_{6}}x=\dfrac{1}{4}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x}-\dfrac{1}{6}+\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x}\]
Cancelling common term, we have:
\[\begin{align}
& {{f}_{4}}x-{{f}_{6}}x=\dfrac{1}{4}-\dfrac{1}{6} \\
& \Rightarrow {{f}_{4}}x-{{f}_{6}}x=\dfrac{6-4}{24}=\dfrac{2}{24}=\dfrac{1}{12} \\
\end{align}\]
So, the correct answer is “Option D”.
Note: The biggest possibility of mistake in this question is at the point where $a={{\sin }^{2}}x$ b is assumed to be $b={{\cos }^{2}}x$ do not go for assuming $a={{\sin }^{4}}x\text{ and b=co}{{\text{s}}^{\text{4}}}\text{x}$ this way, you would not be able to use the formula
\[\begin{align}
& \left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\text{ and }{{\text{f}}_{\text{4}}}\text{x=}{{\sin }^{4}}x+\text{co}{{\text{s}}^{\text{4}}}\text{x} \\
& \Rightarrow {{\text{f}}_{\text{4}}}\text{x=}{{\left( \sin x+\cos x \right)}^{2}}\text{-2}{{\sin }^{4}}x\text{co}{{\text{s}}^{\text{4}}}\text{x} \\
\end{align}\]
This would not give any solution and hence, we would stick. So, go for assuming $a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{2}}\text{x}$
Complete step by step answer:
Given that, \[{{f}_{k}}x=\dfrac{1}{k}\left( \text{si}{{\text{n}}^{\text{k}}}\text{x+co}{{\text{s}}^{\text{k}}}\text{x} \right)\]
Where $x\in R\text{ and R}\ge \text{1}$
Consider k = 4 in above equation, we get:
\[{{f}_{4}}x=\dfrac{1}{4}\left( \text{si}{{\text{n}}^{4}}\text{x+co}{{\text{s}}^{4}}\text{x} \right)\]
We have a identity given as \[\left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\]
Let \[a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{\text{2}}}\text{x}\] and using identity stated above, we get:
\[{{f}_{4}}x=\dfrac{1}{4}\left\{ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{2}}-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, we have trigonometric identity given as:
\[\text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x}=1\]
Using this above, we get:
\[\begin{align}
& {{f}_{4}}x=\dfrac{1}{4}\left\{ 1-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\} \\
& \Rightarrow {{f}_{4}}x=\dfrac{1}{4}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \\
\end{align}\]
Similarly, we will now calculate the value of ${{f}_{6}}(x)$
\[{{f}_{6}}x=\dfrac{1}{6}\left( \text{si}{{\text{n}}^{6}}\text{x+co}{{\text{s}}^{6}}\text{x} \right)\]
Now, we have an identity as \[{{\text{a}}^{\text{3}}}\text{+}{{\text{b}}^{\text{3}}}\text{=}{{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Let, \[a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{\text{2}}}\text{x}\]
Using this in above, we get:
\[{{f}_{6}}x=\dfrac{1}{6}\left[ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{3}}-3\text{co}{{\text{s}}^{2}}\text{xsi}{{\text{n}}^{2}}\text{x}\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right) \right]\]
We have value of \[\text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x}=1\]
Using this in above, we get:
\[\begin{align}
& {{f}_{6}}x=\dfrac{1}{6}\left[ 1-3\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right] \\
& \Rightarrow {{f}_{6}}x=\dfrac{1}{6}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, from equation (i) and (ii) we get:
\[{{f}_{4}}x-{{f}_{6}}x=\dfrac{1}{4}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x}-\dfrac{1}{6}+\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x}\]
Cancelling common term, we have:
\[\begin{align}
& {{f}_{4}}x-{{f}_{6}}x=\dfrac{1}{4}-\dfrac{1}{6} \\
& \Rightarrow {{f}_{4}}x-{{f}_{6}}x=\dfrac{6-4}{24}=\dfrac{2}{24}=\dfrac{1}{12} \\
\end{align}\]
So, the correct answer is “Option D”.
Note: The biggest possibility of mistake in this question is at the point where $a={{\sin }^{2}}x$ b is assumed to be $b={{\cos }^{2}}x$ do not go for assuming $a={{\sin }^{4}}x\text{ and b=co}{{\text{s}}^{\text{4}}}\text{x}$ this way, you would not be able to use the formula
\[\begin{align}
& \left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\text{ and }{{\text{f}}_{\text{4}}}\text{x=}{{\sin }^{4}}x+\text{co}{{\text{s}}^{\text{4}}}\text{x} \\
& \Rightarrow {{\text{f}}_{\text{4}}}\text{x=}{{\left( \sin x+\cos x \right)}^{2}}\text{-2}{{\sin }^{4}}x\text{co}{{\text{s}}^{\text{4}}}\text{x} \\
\end{align}\]
This would not give any solution and hence, we would stick. So, go for assuming $a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{2}}\text{x}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

