
Let the value of f(x) be \[{{f}_{k}}x=\dfrac{1}{k}\left( \text{si}{{\text{n}}^{\text{k}}}\text{x+co}{{\text{s}}^{\text{k}}}\text{x} \right)\] where $x\in R\text{ and R}\ge \text{1}$ then the value of ${{f}_{4}}(x)-{{f}_{6}}(x)$ equals to
\[\begin{align}
& A.\dfrac{1}{6} \\
& B.\dfrac{1}{3} \\
& C.\dfrac{1}{4} \\
& D.\dfrac{1}{12} \\
\end{align}\]
Answer
510.9k+ views
Hint: To solve this question, we will first calculate the value of ${{f}_{4}}(x)$ and value of ${{f}_{6}}(x)$ then subtract them. In between we will use the identity as \[\left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\text{ and }{{\text{a}}^{\text{3}}}\text{+}{{\text{b}}^{\text{3}}}\text{=}{{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Complete step by step answer:
Given that, \[{{f}_{k}}x=\dfrac{1}{k}\left( \text{si}{{\text{n}}^{\text{k}}}\text{x+co}{{\text{s}}^{\text{k}}}\text{x} \right)\]
Where $x\in R\text{ and R}\ge \text{1}$
Consider k = 4 in above equation, we get:
\[{{f}_{4}}x=\dfrac{1}{4}\left( \text{si}{{\text{n}}^{4}}\text{x+co}{{\text{s}}^{4}}\text{x} \right)\]
We have a identity given as \[\left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\]
Let \[a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{\text{2}}}\text{x}\] and using identity stated above, we get:
\[{{f}_{4}}x=\dfrac{1}{4}\left\{ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{2}}-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, we have trigonometric identity given as:
\[\text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x}=1\]
Using this above, we get:
\[\begin{align}
& {{f}_{4}}x=\dfrac{1}{4}\left\{ 1-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\} \\
& \Rightarrow {{f}_{4}}x=\dfrac{1}{4}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \\
\end{align}\]
Similarly, we will now calculate the value of ${{f}_{6}}(x)$
\[{{f}_{6}}x=\dfrac{1}{6}\left( \text{si}{{\text{n}}^{6}}\text{x+co}{{\text{s}}^{6}}\text{x} \right)\]
Now, we have an identity as \[{{\text{a}}^{\text{3}}}\text{+}{{\text{b}}^{\text{3}}}\text{=}{{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Let, \[a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{\text{2}}}\text{x}\]
Using this in above, we get:
\[{{f}_{6}}x=\dfrac{1}{6}\left[ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{3}}-3\text{co}{{\text{s}}^{2}}\text{xsi}{{\text{n}}^{2}}\text{x}\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right) \right]\]
We have value of \[\text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x}=1\]
Using this in above, we get:
\[\begin{align}
& {{f}_{6}}x=\dfrac{1}{6}\left[ 1-3\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right] \\
& \Rightarrow {{f}_{6}}x=\dfrac{1}{6}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, from equation (i) and (ii) we get:
\[{{f}_{4}}x-{{f}_{6}}x=\dfrac{1}{4}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x}-\dfrac{1}{6}+\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x}\]
Cancelling common term, we have:
\[\begin{align}
& {{f}_{4}}x-{{f}_{6}}x=\dfrac{1}{4}-\dfrac{1}{6} \\
& \Rightarrow {{f}_{4}}x-{{f}_{6}}x=\dfrac{6-4}{24}=\dfrac{2}{24}=\dfrac{1}{12} \\
\end{align}\]
So, the correct answer is “Option D”.
Note: The biggest possibility of mistake in this question is at the point where $a={{\sin }^{2}}x$ b is assumed to be $b={{\cos }^{2}}x$ do not go for assuming $a={{\sin }^{4}}x\text{ and b=co}{{\text{s}}^{\text{4}}}\text{x}$ this way, you would not be able to use the formula
\[\begin{align}
& \left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\text{ and }{{\text{f}}_{\text{4}}}\text{x=}{{\sin }^{4}}x+\text{co}{{\text{s}}^{\text{4}}}\text{x} \\
& \Rightarrow {{\text{f}}_{\text{4}}}\text{x=}{{\left( \sin x+\cos x \right)}^{2}}\text{-2}{{\sin }^{4}}x\text{co}{{\text{s}}^{\text{4}}}\text{x} \\
\end{align}\]
This would not give any solution and hence, we would stick. So, go for assuming $a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{2}}\text{x}$
Complete step by step answer:
Given that, \[{{f}_{k}}x=\dfrac{1}{k}\left( \text{si}{{\text{n}}^{\text{k}}}\text{x+co}{{\text{s}}^{\text{k}}}\text{x} \right)\]
Where $x\in R\text{ and R}\ge \text{1}$
Consider k = 4 in above equation, we get:
\[{{f}_{4}}x=\dfrac{1}{4}\left( \text{si}{{\text{n}}^{4}}\text{x+co}{{\text{s}}^{4}}\text{x} \right)\]
We have a identity given as \[\left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\]
Let \[a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{\text{2}}}\text{x}\] and using identity stated above, we get:
\[{{f}_{4}}x=\dfrac{1}{4}\left\{ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{2}}-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, we have trigonometric identity given as:
\[\text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x}=1\]
Using this above, we get:
\[\begin{align}
& {{f}_{4}}x=\dfrac{1}{4}\left\{ 1-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\} \\
& \Rightarrow {{f}_{4}}x=\dfrac{1}{4}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \\
\end{align}\]
Similarly, we will now calculate the value of ${{f}_{6}}(x)$
\[{{f}_{6}}x=\dfrac{1}{6}\left( \text{si}{{\text{n}}^{6}}\text{x+co}{{\text{s}}^{6}}\text{x} \right)\]
Now, we have an identity as \[{{\text{a}}^{\text{3}}}\text{+}{{\text{b}}^{\text{3}}}\text{=}{{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Let, \[a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{\text{2}}}\text{x}\]
Using this in above, we get:
\[{{f}_{6}}x=\dfrac{1}{6}\left[ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{3}}-3\text{co}{{\text{s}}^{2}}\text{xsi}{{\text{n}}^{2}}\text{x}\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right) \right]\]
We have value of \[\text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x}=1\]
Using this in above, we get:
\[\begin{align}
& {{f}_{6}}x=\dfrac{1}{6}\left[ 1-3\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right] \\
& \Rightarrow {{f}_{6}}x=\dfrac{1}{6}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, from equation (i) and (ii) we get:
\[{{f}_{4}}x-{{f}_{6}}x=\dfrac{1}{4}-\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x}-\dfrac{1}{6}+\dfrac{1}{2}\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x}\]
Cancelling common term, we have:
\[\begin{align}
& {{f}_{4}}x-{{f}_{6}}x=\dfrac{1}{4}-\dfrac{1}{6} \\
& \Rightarrow {{f}_{4}}x-{{f}_{6}}x=\dfrac{6-4}{24}=\dfrac{2}{24}=\dfrac{1}{12} \\
\end{align}\]
So, the correct answer is “Option D”.
Note: The biggest possibility of mistake in this question is at the point where $a={{\sin }^{2}}x$ b is assumed to be $b={{\cos }^{2}}x$ do not go for assuming $a={{\sin }^{4}}x\text{ and b=co}{{\text{s}}^{\text{4}}}\text{x}$ this way, you would not be able to use the formula
\[\begin{align}
& \left( {{a}^{2}}+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}-2ab\text{ and }{{\text{f}}_{\text{4}}}\text{x=}{{\sin }^{4}}x+\text{co}{{\text{s}}^{\text{4}}}\text{x} \\
& \Rightarrow {{\text{f}}_{\text{4}}}\text{x=}{{\left( \sin x+\cos x \right)}^{2}}\text{-2}{{\sin }^{4}}x\text{co}{{\text{s}}^{\text{4}}}\text{x} \\
\end{align}\]
This would not give any solution and hence, we would stick. So, go for assuming $a={{\sin }^{2}}x\text{ and b=co}{{\text{s}}^{2}}\text{x}$
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
