
Let the orthocentre and centroid of the triangle \[A( - 3,5)\] and \[B(3,3)\] respectively. IF $C$ is the circumcenter of the triangle, then the radius of the circle having the segment $AC$ as diameter is ?
Answer
509.7k+ views
Hint: In a non-equilateral triangle, the circumference, the centroid and the orthocentre are collinear.Centroid (B) divides the line connecting orthocentre (A) and circumference(C) in the ratio \[2:1\]. Thus, using the Euler’s Line formula, we get, \[(\dfrac{{m{x_2} + n{x_1}}}{{m + n}} + \dfrac{{m{y_2} + n{y_1}}}{{m + n}})\].
Complete step by step answer:
Given data is as below,
Orthocentre point is \[A( - 3,5)\]= A(x1, y1).
Centroid point is \[B(3,3)\]= B(x2, y2).
Circumference point is not given.
Let the coordinates of circumference point C be (x, y).Thus, AB/ BC is in the ratio \[\dfrac{2}{1}\]= m/n. So, B divides AC in the ratio \[2:1\]= m:n. Thus, using the Euler’s Line formula, we get,
\[(\dfrac{{m{x_2} + n{x_1}}}{{m + n}} + \dfrac{{m{y_2} + n{y_1}}}{{m + n}})\]
Here, the given values are
\[m = 2,n = 1 \\
\Rightarrow {x_1} = - 3,{x_2} = x \\
\Rightarrow {y_1} = 5,{y_2} = y \\ \]
So, now we will solve the x coordinate part first and we have,
\[\dfrac{{m{x_2} + n{x_1}}}{{m + n}}\]
Substituting the values in the above equation, we get,
\[ \Rightarrow 3 = \dfrac{{2(x) + 1( - 3)}}{{2 + 1}}\]
Removing the brackets we get,
\[ \Rightarrow 3 = \dfrac{{2x - 3}}{3}\]
\[ \Rightarrow 9 = 2x - 3\]
Simplify the above expression, we get,
\[\Rightarrow 9 + 3 = 2x \\
\Rightarrow 12 = 2x \\
\Rightarrow 2x = 12 \\ \]
\[\Rightarrow x = \dfrac{{12}}{2} \\
\Rightarrow x = 6 \\ \]
Next, we will solve the y coordinate part and we have,
\[\dfrac{{m{y_2} + n{y_1}}}{{m + n}}\]
Substituting the values in the above formula, we get,
\[ \Rightarrow 3 = \dfrac{{2(y) + 1(5)}}{{2 + 1}}\]
Removing the brackets we get,
\[ \Rightarrow 3 = \dfrac{{2y + 5}}{3}\]
\[ \Rightarrow 9 = 2y + 5\]
Simplify the above expression we get,
\[\Rightarrow 9 - 5 = 2y \\
\Rightarrow 4 = 2y \\ \]
\[ \Rightarrow 2y = 4\]
\[\Rightarrow y = \dfrac{4}{2} \\
\Rightarrow y = 2 \]
Thus, the coordinates of C(x, y) =\[C(6,2)\]. Now, the diameter AC formula is where, \[A( - 3,5)\] and \[C(6,2)\].
\[\sqrt {{{(x - {x_1})}^2} + {{(y - {y_1})}^2}} \]
Substituting the values in the above equation, we get,
\[ \text{Diameter (AC)}= \sqrt {{{(6 - ( - 3))}^2} + {{(2 - 5)}^2}} \]
Removing the brackets we get,
\[\text{Diameter (AC)} = \sqrt {{{(6 + 3)}^2} + {{(2 - 5)}^2}} \]
\[\Rightarrow \text{Diameter (AC)} = \sqrt {{{(9)}^2} + {{( - 3)}^2}} \]
Squaring the numbers we get,
\[\text{Diameter (AC)}= \sqrt {81 + 9} \\
\Rightarrow \text{Diameter (AC)}= \sqrt {90} \\ \]
\[\Rightarrow \text{Diameter (AC)} = 3\sqrt {9 \times 10} \]
Reducing the given expression we get,
\[\text{Diameter (AC)}= 3\sqrt {10} \]
Since the radius is half the diameter.
So, Radius is = Diameter / 2
Radius =AC/2
\[\text{Radius}=\dfrac{{3\sqrt {10} }}{2}\]
\[\Rightarrow \text{Radius} = \dfrac{3}{2}\sqrt {10} \]
\[\Rightarrow \text{Radius}= 3 \times \sqrt {\dfrac{{10}}{4}} \]
\[\therefore \text{Radius} = 3 \times \sqrt {\dfrac{5}{2}} \]Units
Thus, the radius of the circle mentioned in the question is \[ = 3 \times \sqrt {\dfrac{5}{2}} \] units.
Note: We need to find the radius of the circle. Since the radius is half the diameter.Also we are using Euler’s line formula to find the coordinates of the given points. Please read the question carefully before answering the question, sometimes they might ask only diameter too and you will waste your time in finding the radius of the circle.
Complete step by step answer:
Given data is as below,
Orthocentre point is \[A( - 3,5)\]= A(x1, y1).
Centroid point is \[B(3,3)\]= B(x2, y2).
Circumference point is not given.
Let the coordinates of circumference point C be (x, y).Thus, AB/ BC is in the ratio \[\dfrac{2}{1}\]= m/n. So, B divides AC in the ratio \[2:1\]= m:n. Thus, using the Euler’s Line formula, we get,
\[(\dfrac{{m{x_2} + n{x_1}}}{{m + n}} + \dfrac{{m{y_2} + n{y_1}}}{{m + n}})\]
Here, the given values are
\[m = 2,n = 1 \\
\Rightarrow {x_1} = - 3,{x_2} = x \\
\Rightarrow {y_1} = 5,{y_2} = y \\ \]
So, now we will solve the x coordinate part first and we have,
\[\dfrac{{m{x_2} + n{x_1}}}{{m + n}}\]
Substituting the values in the above equation, we get,
\[ \Rightarrow 3 = \dfrac{{2(x) + 1( - 3)}}{{2 + 1}}\]
Removing the brackets we get,
\[ \Rightarrow 3 = \dfrac{{2x - 3}}{3}\]
\[ \Rightarrow 9 = 2x - 3\]
Simplify the above expression, we get,
\[\Rightarrow 9 + 3 = 2x \\
\Rightarrow 12 = 2x \\
\Rightarrow 2x = 12 \\ \]
\[\Rightarrow x = \dfrac{{12}}{2} \\
\Rightarrow x = 6 \\ \]
Next, we will solve the y coordinate part and we have,
\[\dfrac{{m{y_2} + n{y_1}}}{{m + n}}\]
Substituting the values in the above formula, we get,
\[ \Rightarrow 3 = \dfrac{{2(y) + 1(5)}}{{2 + 1}}\]
Removing the brackets we get,
\[ \Rightarrow 3 = \dfrac{{2y + 5}}{3}\]
\[ \Rightarrow 9 = 2y + 5\]
Simplify the above expression we get,
\[\Rightarrow 9 - 5 = 2y \\
\Rightarrow 4 = 2y \\ \]
\[ \Rightarrow 2y = 4\]
\[\Rightarrow y = \dfrac{4}{2} \\
\Rightarrow y = 2 \]
Thus, the coordinates of C(x, y) =\[C(6,2)\]. Now, the diameter AC formula is where, \[A( - 3,5)\] and \[C(6,2)\].
\[\sqrt {{{(x - {x_1})}^2} + {{(y - {y_1})}^2}} \]
Substituting the values in the above equation, we get,
\[ \text{Diameter (AC)}= \sqrt {{{(6 - ( - 3))}^2} + {{(2 - 5)}^2}} \]
Removing the brackets we get,
\[\text{Diameter (AC)} = \sqrt {{{(6 + 3)}^2} + {{(2 - 5)}^2}} \]
\[\Rightarrow \text{Diameter (AC)} = \sqrt {{{(9)}^2} + {{( - 3)}^2}} \]
Squaring the numbers we get,
\[\text{Diameter (AC)}= \sqrt {81 + 9} \\
\Rightarrow \text{Diameter (AC)}= \sqrt {90} \\ \]
\[\Rightarrow \text{Diameter (AC)} = 3\sqrt {9 \times 10} \]
Reducing the given expression we get,
\[\text{Diameter (AC)}= 3\sqrt {10} \]
Since the radius is half the diameter.
So, Radius is = Diameter / 2
Radius =AC/2
\[\text{Radius}=\dfrac{{3\sqrt {10} }}{2}\]
\[\Rightarrow \text{Radius} = \dfrac{3}{2}\sqrt {10} \]
\[\Rightarrow \text{Radius}= 3 \times \sqrt {\dfrac{{10}}{4}} \]
\[\therefore \text{Radius} = 3 \times \sqrt {\dfrac{5}{2}} \]Units
Thus, the radius of the circle mentioned in the question is \[ = 3 \times \sqrt {\dfrac{5}{2}} \] units.
Note: We need to find the radius of the circle. Since the radius is half the diameter.Also we are using Euler’s line formula to find the coordinates of the given points. Please read the question carefully before answering the question, sometimes they might ask only diameter too and you will waste your time in finding the radius of the circle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

