
Let the function ${{f}_{k}}\left( x \right)=\dfrac{1}{k}\left( {{\sin }^{k}}x+{{\cos }^{k}}x \right)$ for $k=1,2,3,....$ Then for all $x\in R$, the value of ${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)$ is equal to:
(A) $\dfrac{5}{12}$
(B) $\dfrac{-1}{12}$
(C) $\dfrac{1}{4}$
(D) $\dfrac{1}{12}$
Answer
583.8k+ views
Hint: We solve this question by first considering ${{f}_{4}}\left( x \right)$ and simplify it using the formulas ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ and ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Then we consider the function ${{f}_{6}}\left( x \right)$ and find its value by simplifying the value using the formulas $\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ and ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Then we use these values and find the value of ${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)$.
Complete step-by-step solution:
We are given that the function, ${{f}_{k}}\left( x \right)=\dfrac{1}{k}\left( {{\sin }^{k}}x+{{\cos }^{k}}x \right)$.
We need to find the value of ${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)$.
Now let us consider the ${{f}_{4}}\left( x \right)$. So,
$\begin{align}
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\left( {{\sin }^{2}}x \right)}^{2}}+{{\left( {{\cos }^{2}}x \right)}^{2}} \right) \\
\end{align}$
Now let us consider the formula
$\begin{align}
& \Rightarrow {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab \\
\end{align}$
Using this formula, we can write ${{\sin }^{4}}x+{{\cos }^{4}}x$ as,
${{\sin }^{4}}x+{{\cos }^{4}}x={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x$
Now let us use the formula
${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Using that we can write,
$\begin{align}
& {{\sin }^{4}}x+{{\cos }^{4}}x={{\left( 1 \right)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x \\
& {{\sin }^{4}}x+{{\cos }^{4}}x=1-2{{\sin }^{2}}x{{\cos }^{2}}x..........\left( 1 \right) \\
\end{align}$
Using equation (1) we can write ${{f}_{4}}\left( x \right)$ as,
$\begin{align}
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( 1-2{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x...........\left( 2 \right) \\
\end{align}$
Now let us consider the ${{f}_{6}}\left( x \right)$. So,
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{6}}x+{{\cos }^{6}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}} \right) \\
\end{align}$
Now let us consider the formula,
$\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
Using this formula, we can write the above equation as
$\Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right)$
Now let us consider the formula,
${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Using this formula, we can write the above equation as
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1 \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
\end{align}$
Now let use the value in equation (1) and we write it as,
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1-2{{\sin }^{2}}x{{\cos }^{2}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1-3{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x............\left( 3 \right) \\
\end{align}$
Now using equations (2) and (3) we can find the value of ${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)$ as,
$\begin{align}
& \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{4}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x-\left( \dfrac{1}{6}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\left( \dfrac{1}{4}-\dfrac{1}{6} \right)-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x+\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x \\
& \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12} \\
\end{align}$
So, we get the value of ${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)$ as $\dfrac{1}{12}$.
Hence answer is Option D.
Note: We can also solve this question in another process.
First let us consider the ${{f}_{6}}\left( x \right)$. So,
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{6}}x+{{\cos }^{6}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}} \right) \\
\end{align}$
Now let us consider the formula,
$\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
Using this formula, we can write the above equation as
$\Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right)$
Now let us consider the formula,
${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Using this formula, we can write the above equation as
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1 \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow 6{{f}_{6}}\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x...........\left( 1 \right) \\
\end{align}$
As we have
$\begin{align}
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\
& \Rightarrow 4{{f}_{4}}\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x \\
\end{align}$
Substituting this value in equation (1), we get,
\[\begin{align}
& \Rightarrow 6{{f}_{6}}\left( x \right)=4{{f}_{4}}\left( x \right)-{{\sin }^{2}}x{{\cos }^{2}}x \\
& \Rightarrow 4{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)={{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}\]
Let us add $2{{f}_{4}}\left( x \right)$ on both sides. Then we get,
\[\Rightarrow 6{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)=2{{f}_{4}}\left( x \right)+{{\sin }^{2}}x{{\cos }^{2}}x.......\left( 2 \right)\]
As we know, ${{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)$ we get,
$\Rightarrow 2{{f}_{4}}\left( x \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)$
Substituting this value in the above equation (2) we get
\[\begin{align}
& \Rightarrow 6{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)+{{\sin }^{2}}x{{\cos }^{2}}x \\
& \Rightarrow 6\left( {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right) \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x+2{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12}{{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{2}} \\
\end{align}\]
Using the formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we can write the above equation as
\[\Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12}{{\left( 1 \right)}^{2}}=\dfrac{1}{12}\]
Hence answer is Option D.
Complete step-by-step solution:
We are given that the function, ${{f}_{k}}\left( x \right)=\dfrac{1}{k}\left( {{\sin }^{k}}x+{{\cos }^{k}}x \right)$.
We need to find the value of ${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)$.
Now let us consider the ${{f}_{4}}\left( x \right)$. So,
$\begin{align}
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\left( {{\sin }^{2}}x \right)}^{2}}+{{\left( {{\cos }^{2}}x \right)}^{2}} \right) \\
\end{align}$
Now let us consider the formula
$\begin{align}
& \Rightarrow {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab \\
\end{align}$
Using this formula, we can write ${{\sin }^{4}}x+{{\cos }^{4}}x$ as,
${{\sin }^{4}}x+{{\cos }^{4}}x={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x$
Now let us use the formula
${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Using that we can write,
$\begin{align}
& {{\sin }^{4}}x+{{\cos }^{4}}x={{\left( 1 \right)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x \\
& {{\sin }^{4}}x+{{\cos }^{4}}x=1-2{{\sin }^{2}}x{{\cos }^{2}}x..........\left( 1 \right) \\
\end{align}$
Using equation (1) we can write ${{f}_{4}}\left( x \right)$ as,
$\begin{align}
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( 1-2{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x...........\left( 2 \right) \\
\end{align}$
Now let us consider the ${{f}_{6}}\left( x \right)$. So,
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{6}}x+{{\cos }^{6}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}} \right) \\
\end{align}$
Now let us consider the formula,
$\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
Using this formula, we can write the above equation as
$\Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right)$
Now let us consider the formula,
${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Using this formula, we can write the above equation as
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1 \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
\end{align}$
Now let use the value in equation (1) and we write it as,
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1-2{{\sin }^{2}}x{{\cos }^{2}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1-3{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x............\left( 3 \right) \\
\end{align}$
Now using equations (2) and (3) we can find the value of ${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)$ as,
$\begin{align}
& \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{4}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x-\left( \dfrac{1}{6}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\left( \dfrac{1}{4}-\dfrac{1}{6} \right)-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x+\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x \\
& \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12} \\
\end{align}$
So, we get the value of ${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)$ as $\dfrac{1}{12}$.
Hence answer is Option D.
Note: We can also solve this question in another process.
First let us consider the ${{f}_{6}}\left( x \right)$. So,
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{6}}x+{{\cos }^{6}}x \right) \\
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}} \right) \\
\end{align}$
Now let us consider the formula,
$\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
Using this formula, we can write the above equation as
$\Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right)$
Now let us consider the formula,
${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Using this formula, we can write the above equation as
$\begin{align}
& \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1 \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow 6{{f}_{6}}\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x...........\left( 1 \right) \\
\end{align}$
As we have
$\begin{align}
& \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\
& \Rightarrow 4{{f}_{4}}\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x \\
\end{align}$
Substituting this value in equation (1), we get,
\[\begin{align}
& \Rightarrow 6{{f}_{6}}\left( x \right)=4{{f}_{4}}\left( x \right)-{{\sin }^{2}}x{{\cos }^{2}}x \\
& \Rightarrow 4{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)={{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}\]
Let us add $2{{f}_{4}}\left( x \right)$ on both sides. Then we get,
\[\Rightarrow 6{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)=2{{f}_{4}}\left( x \right)+{{\sin }^{2}}x{{\cos }^{2}}x.......\left( 2 \right)\]
As we know, ${{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)$ we get,
$\Rightarrow 2{{f}_{4}}\left( x \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)$
Substituting this value in the above equation (2) we get
\[\begin{align}
& \Rightarrow 6{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)+{{\sin }^{2}}x{{\cos }^{2}}x \\
& \Rightarrow 6\left( {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right) \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x+2{{\sin }^{2}}x{{\cos }^{2}}x \right) \\
& \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12}{{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{2}} \\
\end{align}\]
Using the formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we can write the above equation as
\[\Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12}{{\left( 1 \right)}^{2}}=\dfrac{1}{12}\]
Hence answer is Option D.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

