
Let ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$, then prove that $\cos 2y=1+2\cos 2x$.
Answer
559.8k+ views
Hint: We try to use the formula of multiple angles relating $\cos 2x$ and $\tan x$. The theorem is $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. Using the formula, we find the value of $\cos 2y$ in terms of ${{\tan }^{2}}x$. We also have to break the numerator of the equation to form the relation for $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
We replace the values to prove $\cos 2y=1+2\cos 2x$.
Complete step by step answer:
We have been given ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$. We convert the trigonometric ratios using the formulas of multiple angles.
We know that $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. So, we find the value of ${{\tan }^{2}}y$ from the equation ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$.
So, ${{\tan }^{2}}x=1+2{{\tan }^{2}}y\Rightarrow {{\tan }^{2}}y=\dfrac{{{\tan }^{2}}x-1}{2}$.
We place the value in the left-hand side of the equation $\cos 2y=1+2\cos 2x$.
$\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}$.
We need to solve the equation now to find the form of $\cos 2y=1+2\cos 2x$.
We first multiply both denominator and numerator with 2.
$\cos 2y=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}=\dfrac{2-\left( {{\tan }^{2}}x-1 \right)}{2+\left( {{\tan }^{2}}x-1 \right)}=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
Now we take out a constant 1 from the equation.
$\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
We break it into two parts and use the theorem $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
$\cos 2y=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1}{{{\tan }^{2}}x+1}+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{2}}x}=1+2\cos 2x$.
Thus proved.
Note: We also can find the derived form of both sides of the to prove statement $\cos 2y=1+2\cos 2x$. We have already got $\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$. Now we try to form the same value for the equation $1+2\cos 2x$ where
$\begin{align}
& 1+2\cos 2x \\
& =1+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1-{{\tan }^{2}}x} \\
& =\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
& =\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
\end{align}$
So, both R.H.S and L.H.S match and the statement is proved.
We replace the values to prove $\cos 2y=1+2\cos 2x$.
Complete step by step answer:
We have been given ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$. We convert the trigonometric ratios using the formulas of multiple angles.
We know that $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. So, we find the value of ${{\tan }^{2}}y$ from the equation ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$.
So, ${{\tan }^{2}}x=1+2{{\tan }^{2}}y\Rightarrow {{\tan }^{2}}y=\dfrac{{{\tan }^{2}}x-1}{2}$.
We place the value in the left-hand side of the equation $\cos 2y=1+2\cos 2x$.
$\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}$.
We need to solve the equation now to find the form of $\cos 2y=1+2\cos 2x$.
We first multiply both denominator and numerator with 2.
$\cos 2y=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}=\dfrac{2-\left( {{\tan }^{2}}x-1 \right)}{2+\left( {{\tan }^{2}}x-1 \right)}=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
Now we take out a constant 1 from the equation.
$\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
We break it into two parts and use the theorem $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
$\cos 2y=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1}{{{\tan }^{2}}x+1}+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{2}}x}=1+2\cos 2x$.
Thus proved.
Note: We also can find the derived form of both sides of the to prove statement $\cos 2y=1+2\cos 2x$. We have already got $\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$. Now we try to form the same value for the equation $1+2\cos 2x$ where
$\begin{align}
& 1+2\cos 2x \\
& =1+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1-{{\tan }^{2}}x} \\
& =\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
& =\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
\end{align}$
So, both R.H.S and L.H.S match and the statement is proved.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

