
Let ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$, then prove that $\cos 2y=1+2\cos 2x$.
Answer
483.9k+ views
Hint: We try to use the formula of multiple angles relating $\cos 2x$ and $\tan x$. The theorem is $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. Using the formula, we find the value of $\cos 2y$ in terms of ${{\tan }^{2}}x$. We also have to break the numerator of the equation to form the relation for $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
We replace the values to prove $\cos 2y=1+2\cos 2x$.
Complete step by step answer:
We have been given ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$. We convert the trigonometric ratios using the formulas of multiple angles.
We know that $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. So, we find the value of ${{\tan }^{2}}y$ from the equation ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$.
So, ${{\tan }^{2}}x=1+2{{\tan }^{2}}y\Rightarrow {{\tan }^{2}}y=\dfrac{{{\tan }^{2}}x-1}{2}$.
We place the value in the left-hand side of the equation $\cos 2y=1+2\cos 2x$.
$\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}$.
We need to solve the equation now to find the form of $\cos 2y=1+2\cos 2x$.
We first multiply both denominator and numerator with 2.
$\cos 2y=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}=\dfrac{2-\left( {{\tan }^{2}}x-1 \right)}{2+\left( {{\tan }^{2}}x-1 \right)}=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
Now we take out a constant 1 from the equation.
$\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
We break it into two parts and use the theorem $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
$\cos 2y=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1}{{{\tan }^{2}}x+1}+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{2}}x}=1+2\cos 2x$.
Thus proved.
Note: We also can find the derived form of both sides of the to prove statement $\cos 2y=1+2\cos 2x$. We have already got $\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$. Now we try to form the same value for the equation $1+2\cos 2x$ where
$\begin{align}
& 1+2\cos 2x \\
& =1+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1-{{\tan }^{2}}x} \\
& =\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
& =\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
\end{align}$
So, both R.H.S and L.H.S match and the statement is proved.
We replace the values to prove $\cos 2y=1+2\cos 2x$.
Complete step by step answer:
We have been given ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$. We convert the trigonometric ratios using the formulas of multiple angles.
We know that $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. So, we find the value of ${{\tan }^{2}}y$ from the equation ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$.
So, ${{\tan }^{2}}x=1+2{{\tan }^{2}}y\Rightarrow {{\tan }^{2}}y=\dfrac{{{\tan }^{2}}x-1}{2}$.
We place the value in the left-hand side of the equation $\cos 2y=1+2\cos 2x$.
$\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}$.
We need to solve the equation now to find the form of $\cos 2y=1+2\cos 2x$.
We first multiply both denominator and numerator with 2.
$\cos 2y=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}=\dfrac{2-\left( {{\tan }^{2}}x-1 \right)}{2+\left( {{\tan }^{2}}x-1 \right)}=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
Now we take out a constant 1 from the equation.
$\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
We break it into two parts and use the theorem $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
$\cos 2y=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1}{{{\tan }^{2}}x+1}+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{2}}x}=1+2\cos 2x$.
Thus proved.
Note: We also can find the derived form of both sides of the to prove statement $\cos 2y=1+2\cos 2x$. We have already got $\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$. Now we try to form the same value for the equation $1+2\cos 2x$ where
$\begin{align}
& 1+2\cos 2x \\
& =1+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1-{{\tan }^{2}}x} \\
& =\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
& =\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
\end{align}$
So, both R.H.S and L.H.S match and the statement is proved.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Discuss the main reasons for poverty in India

What is the past participle of wear Is it worn or class 10 english CBSE

Difference between mass and weight class 10 physics CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
