
Let ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$, then prove that $\cos 2y=1+2\cos 2x$.
Answer
571.8k+ views
Hint: We try to use the formula of multiple angles relating $\cos 2x$ and $\tan x$. The theorem is $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. Using the formula, we find the value of $\cos 2y$ in terms of ${{\tan }^{2}}x$. We also have to break the numerator of the equation to form the relation for $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
We replace the values to prove $\cos 2y=1+2\cos 2x$.
Complete step by step answer:
We have been given ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$. We convert the trigonometric ratios using the formulas of multiple angles.
We know that $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. So, we find the value of ${{\tan }^{2}}y$ from the equation ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$.
So, ${{\tan }^{2}}x=1+2{{\tan }^{2}}y\Rightarrow {{\tan }^{2}}y=\dfrac{{{\tan }^{2}}x-1}{2}$.
We place the value in the left-hand side of the equation $\cos 2y=1+2\cos 2x$.
$\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}$.
We need to solve the equation now to find the form of $\cos 2y=1+2\cos 2x$.
We first multiply both denominator and numerator with 2.
$\cos 2y=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}=\dfrac{2-\left( {{\tan }^{2}}x-1 \right)}{2+\left( {{\tan }^{2}}x-1 \right)}=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
Now we take out a constant 1 from the equation.
$\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
We break it into two parts and use the theorem $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
$\cos 2y=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1}{{{\tan }^{2}}x+1}+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{2}}x}=1+2\cos 2x$.
Thus proved.
Note: We also can find the derived form of both sides of the to prove statement $\cos 2y=1+2\cos 2x$. We have already got $\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$. Now we try to form the same value for the equation $1+2\cos 2x$ where
$\begin{align}
& 1+2\cos 2x \\
& =1+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1-{{\tan }^{2}}x} \\
& =\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
& =\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
\end{align}$
So, both R.H.S and L.H.S match and the statement is proved.
We replace the values to prove $\cos 2y=1+2\cos 2x$.
Complete step by step answer:
We have been given ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$. We convert the trigonometric ratios using the formulas of multiple angles.
We know that $\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}$. So, we find the value of ${{\tan }^{2}}y$ from the equation ${{\tan }^{2}}x=1+2{{\tan }^{2}}y$.
So, ${{\tan }^{2}}x=1+2{{\tan }^{2}}y\Rightarrow {{\tan }^{2}}y=\dfrac{{{\tan }^{2}}x-1}{2}$.
We place the value in the left-hand side of the equation $\cos 2y=1+2\cos 2x$.
$\cos 2y=\dfrac{1-{{\tan }^{2}}y}{1+{{\tan }^{2}}y}=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}$.
We need to solve the equation now to find the form of $\cos 2y=1+2\cos 2x$.
We first multiply both denominator and numerator with 2.
$\cos 2y=\dfrac{1-\dfrac{{{\tan }^{2}}x-1}{2}}{1+\dfrac{{{\tan }^{2}}x-1}{2}}=\dfrac{2-\left( {{\tan }^{2}}x-1 \right)}{2+\left( {{\tan }^{2}}x-1 \right)}=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
Now we take out a constant 1 from the equation.
$\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$
We break it into two parts and use the theorem $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$.
$\cos 2y=\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1}=\dfrac{{{\tan }^{2}}x+1}{{{\tan }^{2}}x+1}+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{2}}x}=1+2\cos 2x$.
Thus proved.
Note: We also can find the derived form of both sides of the to prove statement $\cos 2y=1+2\cos 2x$. We have already got $\cos 2y=\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1}$. Now we try to form the same value for the equation $1+2\cos 2x$ where
$\begin{align}
& 1+2\cos 2x \\
& =1+\dfrac{2\left( 1-{{\tan }^{2}}x \right)}{1-{{\tan }^{2}}x} \\
& =\dfrac{{{\tan }^{2}}x+1+2-2{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
& =\dfrac{3-{{\tan }^{2}}x}{{{\tan }^{2}}x+1} \\
\end{align}$
So, both R.H.S and L.H.S match and the statement is proved.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

