
Let ${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$ , then find the value of $\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}$ is
(a) $ln\dfrac{3}{2}$
(b) $ln\dfrac{9}{2}$
(c) Greater than one
(d) Less than two
Answer
599.7k+ views
Hint: Convert summation to integral using Riemann integral concept and then apply the limits.
Complete step-by-step solution -
Consider the given expression,
${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$
This can be converted to summation as,
\[{{S}_{n}}=\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}\]
Now we will apply limits, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}\]
Dividing numerator and denominator by n2, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{n}{{{n}^{2}}}}{\dfrac{\left( n+r \right)}{n}\dfrac{\left( n+2r \right)}{n}}\]
In the denominator we will separate the terms, then we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( \dfrac{n}{n}+\dfrac{r}{n} \right)\left( \dfrac{n}{n}+\dfrac{2r}{n} \right)}\]
Cancelling the like terms, we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}\ldots \ldots \ldots .\left( i \right)\]
Now we know the way to solve the summation limit is to convert the summation into integral.
For this first let us assume
\[\dfrac{r}{n}=x\Rightarrow \dfrac{1}{n}=dx\]
Let’s find the limits of integrals,
When \[r=1\], then $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}=0$ , therefore, $x=0$.
When $r=n$ , then $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{n}{n}=1$, therefore, $x=1$.
Considering these values the summation can be written as integral form. We get,
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}\ldots \ldots \left( ii \right)\]
Now we will apply partial decomposition fraction to simplify the above equation.\[\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{A}{1+x}+\dfrac{B}{1+2x}\ldots ..\left( iii \right)\]
\[\Rightarrow 1=A\left( 1+2x \right)+B\left( 1+x \right)\]
Now put (x=-1), we get
\[\Rightarrow 1=A\left( 1+2\left( -1 \right) \right)+B\left( 1-1 \right)\]
\[\Rightarrow 1=A\left( -1 \right)+0\]
\[\Rightarrow A=-1\]
Now put $x=-\dfrac{1}{2}$, we get
\[\Rightarrow 1=A\left( 1+2\left( -\dfrac{1}{2} \right) \right)+B\left( 1-\dfrac{1}{2} \right)\]
\[\Rightarrow 1=A\left( 1-1 \right)+B\left( \dfrac{2-1}{2} \right)\]
\[\Rightarrow 1=0+B\left( \dfrac{1}{2} \right)\]
\[\Rightarrow B=2\]
Now substituting the value of ‘A’ and ‘B’ in equation (iii), we get
\[\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{-1}{1+x}+\dfrac{2}{1+2x}\]
Substituting this in equation (ii), we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\left[ \dfrac{2}{1+2x}-\dfrac{1}{1+x} \right]dx\]
Applying linearity, we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+2x}dx-\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+x}dx\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}=\ln \left( u \right)$, so above equation becomes,
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+2x \right)dx \right]-\left[ \ln \left( 1+x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+x \right)dx \right]\]
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\left( \dfrac{1}{2} \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right)\left( 1 \right) \right]_{0}^{1}\]
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2x \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right) \right]_{0}^{1}\]
Applying the upper bound and lower bound, we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2\left( 1 \right) \right)-\ln \left( 1+2\left( 0 \right) \right) \right]-\left[ \ln \left( 1+\left( 1 \right) \right)-\ln \left( 1+\left( 0 \right) \right) \right]\]
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-\ln \left( 1 \right) \right]-\left[ \ln \left( 2 \right)-\ln \left( 1 \right) \right]\]
But we know, $\ln 1=0$, so we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-0 \right]-\left[ \ln \left( 2 \right)-0 \right]\]
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln 3-\ln 2\]
We know, $\log a-\log b=\log \left( \dfrac{a}{b} \right)$, so the above equation becomes,
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln \dfrac{3}{2}\]
Substituting this value in equation (i), we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\ln \dfrac{3}{2}\]
As the RHS is free of variable, so we can remove the limit, so we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\ln \dfrac{3}{2}\]
Hence, the correct option for the given question is option (a).
So, the answer is Option (a)
Note: In the following equation,
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}\]
Instead of solving by partial decomposition fraction method we can use substitution method too. The answer will be the same.
One more possible mistake is when converting the summation to integral, the student will get confused on how to get the limit of integral.
Complete step-by-step solution -
Consider the given expression,
${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$
This can be converted to summation as,
\[{{S}_{n}}=\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}\]
Now we will apply limits, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}\]
Dividing numerator and denominator by n2, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{n}{{{n}^{2}}}}{\dfrac{\left( n+r \right)}{n}\dfrac{\left( n+2r \right)}{n}}\]
In the denominator we will separate the terms, then we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( \dfrac{n}{n}+\dfrac{r}{n} \right)\left( \dfrac{n}{n}+\dfrac{2r}{n} \right)}\]
Cancelling the like terms, we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}\ldots \ldots \ldots .\left( i \right)\]
Now we know the way to solve the summation limit is to convert the summation into integral.
For this first let us assume
\[\dfrac{r}{n}=x\Rightarrow \dfrac{1}{n}=dx\]
Let’s find the limits of integrals,
When \[r=1\], then $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}=0$ , therefore, $x=0$.
When $r=n$ , then $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{n}{n}=1$, therefore, $x=1$.
Considering these values the summation can be written as integral form. We get,
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}\ldots \ldots \left( ii \right)\]
Now we will apply partial decomposition fraction to simplify the above equation.\[\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{A}{1+x}+\dfrac{B}{1+2x}\ldots ..\left( iii \right)\]
\[\Rightarrow 1=A\left( 1+2x \right)+B\left( 1+x \right)\]
Now put (x=-1), we get
\[\Rightarrow 1=A\left( 1+2\left( -1 \right) \right)+B\left( 1-1 \right)\]
\[\Rightarrow 1=A\left( -1 \right)+0\]
\[\Rightarrow A=-1\]
Now put $x=-\dfrac{1}{2}$, we get
\[\Rightarrow 1=A\left( 1+2\left( -\dfrac{1}{2} \right) \right)+B\left( 1-\dfrac{1}{2} \right)\]
\[\Rightarrow 1=A\left( 1-1 \right)+B\left( \dfrac{2-1}{2} \right)\]
\[\Rightarrow 1=0+B\left( \dfrac{1}{2} \right)\]
\[\Rightarrow B=2\]
Now substituting the value of ‘A’ and ‘B’ in equation (iii), we get
\[\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{-1}{1+x}+\dfrac{2}{1+2x}\]
Substituting this in equation (ii), we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\left[ \dfrac{2}{1+2x}-\dfrac{1}{1+x} \right]dx\]
Applying linearity, we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+2x}dx-\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+x}dx\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}=\ln \left( u \right)$, so above equation becomes,
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+2x \right)dx \right]-\left[ \ln \left( 1+x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+x \right)dx \right]\]
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\left( \dfrac{1}{2} \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right)\left( 1 \right) \right]_{0}^{1}\]
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2x \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right) \right]_{0}^{1}\]
Applying the upper bound and lower bound, we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2\left( 1 \right) \right)-\ln \left( 1+2\left( 0 \right) \right) \right]-\left[ \ln \left( 1+\left( 1 \right) \right)-\ln \left( 1+\left( 0 \right) \right) \right]\]
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-\ln \left( 1 \right) \right]-\left[ \ln \left( 2 \right)-\ln \left( 1 \right) \right]\]
But we know, $\ln 1=0$, so we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-0 \right]-\left[ \ln \left( 2 \right)-0 \right]\]
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln 3-\ln 2\]
We know, $\log a-\log b=\log \left( \dfrac{a}{b} \right)$, so the above equation becomes,
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln \dfrac{3}{2}\]
Substituting this value in equation (i), we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\ln \dfrac{3}{2}\]
As the RHS is free of variable, so we can remove the limit, so we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\ln \dfrac{3}{2}\]
Hence, the correct option for the given question is option (a).
So, the answer is Option (a)
Note: In the following equation,
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}\]
Instead of solving by partial decomposition fraction method we can use substitution method too. The answer will be the same.
One more possible mistake is when converting the summation to integral, the student will get confused on how to get the limit of integral.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

