
Let S be the set of all non- zero real numbers $\alpha $ such that the quadratic equation $\alpha {x^2} - x + \alpha = 0$ has two distinct real roots ${x_1}$ and ${x_2}$ satisfying the inequality $\left| {{x_1} - {x_2}} \right| < 1.$ Which of the following intervals is(are) subset(s) of S?
This question has multiple correct options
A. $\left( {\dfrac{{ - 1}}{2},\dfrac{{ - 1}}{{\sqrt 5 }}} \right)$
B. $\left( {\dfrac{{ - 1}}{{\sqrt 5 }},0} \right)$
C. $\left( {0,\dfrac{1}{{\sqrt 5 }}} \right)$
D. $\left( {\dfrac{1}{{\sqrt 5 }},\dfrac{1}{2}} \right)$
Answer
600k+ views
Hint: In order to solve this question we will make use two properties of quadratic equation first one is that for two real distinct real roots ${b^2} - 4ac$ of quadratic equation $\left( {a{x^2} + bx + c = 0} \right)$ must be greater than 0, and second one is that sum of given equation roots can be written as $\dfrac{{ - b}}{{2a}}$ and product of roots $\dfrac{c}{a}.$
Complete Step-by-Step solution:
$\alpha {x^2} - x + \alpha = 0$ has two distinct real roots ${x_1}$ and ${x_2};\left| {{x_1} - {x_2}} \right| < 1.$
As we know that for real and distinct roots $D > 0$
Where $D = {b^2} - 4ac$
$
D > 0 \Rightarrow 1 - 4{\alpha ^2} > 0 \\
\Rightarrow {\alpha ^2} < \dfrac{1}{4} \\
\Rightarrow \alpha \in \left( { - \dfrac{1}{2},\dfrac{1}{2}} \right)...........\left( 1 \right) \\
$
Also,
$
{\left| {{x_1} - {x_2}} \right|^2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} < 1 \\
\Rightarrow 1 > {\left( {\dfrac{1}{\alpha }} \right)^2} - 4 \\
\Rightarrow \dfrac{1}{{{\alpha ^2}}} < 5 \\
\Rightarrow {\alpha ^2} > \dfrac{1}{5} \\
\Rightarrow \alpha \in \left( { - \infty ,\dfrac{{ - 1}}{{\sqrt 5 }}} \right) \cup \left( {\dfrac{1}{{\sqrt 5 }},\infty } \right)..........\left( 2 \right) \\
$
Therefore, intersection of equation (1) and (2) gives
$\alpha \in \left( {\dfrac{{ - 1}}{2},\dfrac{{ - 1}}{{\sqrt 5 }}} \right) \cup \left( {\dfrac{1}{{\sqrt 5 }},\dfrac{1}{2}} \right)$
Hence the correct option is “A” and “D”.
Note: In order to solve these types of questions, remember the basic properties of quadratic equations such as the complex roots of a quadratic equation always exist in pairs. Also remember that when the value of D is equal to zero equal roots exist and when D is less than zero complex roots exist and when D is greater than zero real and distinct roots exist.
Complete Step-by-Step solution:
$\alpha {x^2} - x + \alpha = 0$ has two distinct real roots ${x_1}$ and ${x_2};\left| {{x_1} - {x_2}} \right| < 1.$
As we know that for real and distinct roots $D > 0$
Where $D = {b^2} - 4ac$
$
D > 0 \Rightarrow 1 - 4{\alpha ^2} > 0 \\
\Rightarrow {\alpha ^2} < \dfrac{1}{4} \\
\Rightarrow \alpha \in \left( { - \dfrac{1}{2},\dfrac{1}{2}} \right)...........\left( 1 \right) \\
$
Also,
$
{\left| {{x_1} - {x_2}} \right|^2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} < 1 \\
\Rightarrow 1 > {\left( {\dfrac{1}{\alpha }} \right)^2} - 4 \\
\Rightarrow \dfrac{1}{{{\alpha ^2}}} < 5 \\
\Rightarrow {\alpha ^2} > \dfrac{1}{5} \\
\Rightarrow \alpha \in \left( { - \infty ,\dfrac{{ - 1}}{{\sqrt 5 }}} \right) \cup \left( {\dfrac{1}{{\sqrt 5 }},\infty } \right)..........\left( 2 \right) \\
$
Therefore, intersection of equation (1) and (2) gives
$\alpha \in \left( {\dfrac{{ - 1}}{2},\dfrac{{ - 1}}{{\sqrt 5 }}} \right) \cup \left( {\dfrac{1}{{\sqrt 5 }},\dfrac{1}{2}} \right)$
Hence the correct option is “A” and “D”.
Note: In order to solve these types of questions, remember the basic properties of quadratic equations such as the complex roots of a quadratic equation always exist in pairs. Also remember that when the value of D is equal to zero equal roots exist and when D is less than zero complex roots exist and when D is greater than zero real and distinct roots exist.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

