
Let $R$ be the resultant of $P$ and $Q$ and if $\left( {\dfrac{P}{3}} \right) = \left( {\dfrac{Q}{7}} \right) = \left( {\dfrac{R}{5}} \right)$, then the angle between P and R is?
A) ${\cos ^{ - 1}}\left( {\dfrac{{11}}{{14}}} \right)$
B) ${\cos ^{ - 1}}\left( { - \dfrac{{11}}{{14}}} \right)$
C) $\dfrac{{2\pi }}{3}$
D) $\dfrac{{5\pi }}{6}$
Answer
433.8k+ views
Hint: Here, in the question, we are given that $R$ is the resultant of $P$ and $Q$ vector and we have to find the angle between the vector $P$ and the vector $R$. We know the formula to find the magnitude of resultant vector, which is $R = \sqrt {{P^2} + {Q^2} + 2PQ\cos \theta } $, here $P$, $Q$, $R$ are the magnitude of vectors and $\theta $ is the angle between vector $P$, $Q$. As we can see, in the given question the relation between three vectors is given so by using this we can find the value of $\theta $. There is an another relation, $\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}$ where $\phi $ is the angle between resultant vector $R$ and vector $P$ . So, from here we can find the value of the angle between $P$ and $R$.
Formula used:
$R = \sqrt {{P^2} + {Q^2} + 2PQ\cos \theta } $
On squaring both sides, we get
${R^2} = {P^2} + {Q^2} + 2PQ\cos \theta $
$\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}$
Complete answer:
Given, $\dfrac{P}{3} = \dfrac{Q}{7} = \dfrac{R}{5}$
Let, $\lambda {\text{}} = \dfrac{P}{3} = \dfrac{Q}{7} = \dfrac{R}{5}$
Or we can write it as,
$ \Rightarrow \dfrac{P}{3} = \lambda ,\dfrac{Q}{7} = \lambda ,\dfrac{R}{5} = \lambda $
$ \Rightarrow P = 3\lambda ,Q = 7\lambda ,R = 5\lambda $
We know that, ${R^2} = {P^2} + {Q^2} + 2PQ\cos \theta $
Now, since we have values of $P$, $Q$ and $R$ we can substitute these values in the above written formula to get the value of $\cos \theta $.
$ \Rightarrow {\left( {5\lambda } \right)^2} = {\left( {3\lambda } \right)^2} + {\left( {7\lambda } \right)^2} + 2\left( {3\lambda } \right)\left( {7\lambda } \right)\cos \theta $
On simplifying, we get
$ \Rightarrow 25{\lambda ^2} = 9{\lambda ^2} + 49{\lambda ^2} + 42{\lambda ^2}\cos \theta $
Shift $9{\lambda ^2}$ and $49{\lambda ^2}$ to LHS,
$ \Rightarrow 25{\lambda ^2} - 9{\lambda ^2} - 49{\lambda ^2} = 42{\lambda ^2}\cos \theta $
$ \Rightarrow {\text{}} - 33{\lambda ^2} = 42{\lambda ^2}\cos \theta $
It can also be written as,
$ \Rightarrow 42{\lambda ^2}\cos \theta {\text{}} = {\text{}} - 33{\lambda ^2}$
\[ \Rightarrow \cos \theta {\text{}} = \dfrac{{ - 33{\lambda ^2}}}{{42{\lambda ^2}}}\]
After cancelling out ${\lambda ^2}$ and division, we get
\[ \Rightarrow \cos \theta {\text{}} = \dfrac{{ - 11}}{{14}}\]
As we know that $\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}$.
Now, we will substitute the values of $P$, $Q$, $R$ and $\cos \theta $ in the above written formula.
$ \Rightarrow \cos \phi {\text{}} = \dfrac{{3\lambda {\text{}} + 7\lambda \left( {\dfrac{{ - 11}}{{14}}} \right)}}{{5\lambda }}$
Take $\lambda $ as a common factor
$ \Rightarrow \cos \phi {\text{}} = \dfrac{{\lambda \left( {3 + 7\left( {\dfrac{{ - 11}}{{14}}} \right)} \right)}}{{5\lambda }}$
On cancelling out $\lambda $, we get
$ \Rightarrow \cos \phi {\text{}} = \dfrac{{\left( {3 + 7\left( {\dfrac{{ - 11}}{{14}}} \right)} \right)}}{5} = \dfrac{{3 + \left( {\dfrac{{ - 11}}{2}} \right)}}{5}$
\[ \Rightarrow \cos \phi {\text{}} = \dfrac{{3 - \dfrac{{11}}{2}}}{5}\]
Solve the numerator by taking LCM
$ \Rightarrow \cos \phi {\text{}} = \dfrac{{\dfrac{{6 - 11}}{2}}}{5}$
\[ \Rightarrow \cos \phi {\text{}} = \dfrac{{\dfrac{{ - 5}}{2}}}{5}\]
It can also be written as,
\[ \Rightarrow \cos \phi {\text{}} = \dfrac{{ - 5}}{2} \times \dfrac{1}{5}\]
\[ \Rightarrow \cos \phi {\text{}} = \dfrac{{ - 1}}{2}\]
On shifting $\cos $ to RHS, we get
$ \Rightarrow \phi {\text{}} = {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)$
We know that, ${\cos ^{ - 1}}\left( { - x} \right) = \pi {\text{}} - {\cos ^{ - 1}}x,x \in \left[ { - 1,1} \right]$. Therefore, we get
$ \Rightarrow \phi {\text{}} = \pi {\text{}} - {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right)$
We know that $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$. So, on replacing, we get
$ \Rightarrow \phi {\text{}} = \pi {\text{}} - {\cos ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right)$
Also, we know ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $. Therefore, we get
$ \Rightarrow \phi {\text{}} = \pi {\text{}} - \dfrac{\pi }{3}$
$ \Rightarrow \phi {\text{}} = \dfrac{{2\pi }}{3}$
Thus, the angle between $P$ and $R$ is $\dfrac{{2\pi }}{3}$.
Therefore, the correct option is C.
Note:
Here, in the given question we have found the value of angle between $P$ and $R$ using the formula $\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}$. If the question was about finding the value of the angle between $Q$ and $R$ we will not apply this formula. We will use $\cos \phi {\text{}} = \dfrac{{Q + P\cos \theta }}{R}$. To solve these type of questions we should know all the required values of standard angles say,${0^\circ }$, ${30^\circ }$, ${60^\circ }$, ${90^\circ }$, ${180^\circ }$, ${270^\circ }$, ${360^\circ }$ respectively for each trigonometric term such as $\sin $, $\cos $, $\tan $, $\cot $, $\sec $, $\cos ec$, etc.
Formula used:
$R = \sqrt {{P^2} + {Q^2} + 2PQ\cos \theta } $
On squaring both sides, we get
${R^2} = {P^2} + {Q^2} + 2PQ\cos \theta $
$\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}$
Complete answer:

Given, $\dfrac{P}{3} = \dfrac{Q}{7} = \dfrac{R}{5}$
Let, $\lambda {\text{}} = \dfrac{P}{3} = \dfrac{Q}{7} = \dfrac{R}{5}$
Or we can write it as,
$ \Rightarrow \dfrac{P}{3} = \lambda ,\dfrac{Q}{7} = \lambda ,\dfrac{R}{5} = \lambda $
$ \Rightarrow P = 3\lambda ,Q = 7\lambda ,R = 5\lambda $
We know that, ${R^2} = {P^2} + {Q^2} + 2PQ\cos \theta $
Now, since we have values of $P$, $Q$ and $R$ we can substitute these values in the above written formula to get the value of $\cos \theta $.
$ \Rightarrow {\left( {5\lambda } \right)^2} = {\left( {3\lambda } \right)^2} + {\left( {7\lambda } \right)^2} + 2\left( {3\lambda } \right)\left( {7\lambda } \right)\cos \theta $
On simplifying, we get
$ \Rightarrow 25{\lambda ^2} = 9{\lambda ^2} + 49{\lambda ^2} + 42{\lambda ^2}\cos \theta $
Shift $9{\lambda ^2}$ and $49{\lambda ^2}$ to LHS,
$ \Rightarrow 25{\lambda ^2} - 9{\lambda ^2} - 49{\lambda ^2} = 42{\lambda ^2}\cos \theta $
$ \Rightarrow {\text{}} - 33{\lambda ^2} = 42{\lambda ^2}\cos \theta $
It can also be written as,
$ \Rightarrow 42{\lambda ^2}\cos \theta {\text{}} = {\text{}} - 33{\lambda ^2}$
\[ \Rightarrow \cos \theta {\text{}} = \dfrac{{ - 33{\lambda ^2}}}{{42{\lambda ^2}}}\]
After cancelling out ${\lambda ^2}$ and division, we get
\[ \Rightarrow \cos \theta {\text{}} = \dfrac{{ - 11}}{{14}}\]
As we know that $\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}$.
Now, we will substitute the values of $P$, $Q$, $R$ and $\cos \theta $ in the above written formula.
$ \Rightarrow \cos \phi {\text{}} = \dfrac{{3\lambda {\text{}} + 7\lambda \left( {\dfrac{{ - 11}}{{14}}} \right)}}{{5\lambda }}$
Take $\lambda $ as a common factor
$ \Rightarrow \cos \phi {\text{}} = \dfrac{{\lambda \left( {3 + 7\left( {\dfrac{{ - 11}}{{14}}} \right)} \right)}}{{5\lambda }}$
On cancelling out $\lambda $, we get
$ \Rightarrow \cos \phi {\text{}} = \dfrac{{\left( {3 + 7\left( {\dfrac{{ - 11}}{{14}}} \right)} \right)}}{5} = \dfrac{{3 + \left( {\dfrac{{ - 11}}{2}} \right)}}{5}$
\[ \Rightarrow \cos \phi {\text{}} = \dfrac{{3 - \dfrac{{11}}{2}}}{5}\]
Solve the numerator by taking LCM
$ \Rightarrow \cos \phi {\text{}} = \dfrac{{\dfrac{{6 - 11}}{2}}}{5}$
\[ \Rightarrow \cos \phi {\text{}} = \dfrac{{\dfrac{{ - 5}}{2}}}{5}\]
It can also be written as,
\[ \Rightarrow \cos \phi {\text{}} = \dfrac{{ - 5}}{2} \times \dfrac{1}{5}\]
\[ \Rightarrow \cos \phi {\text{}} = \dfrac{{ - 1}}{2}\]
On shifting $\cos $ to RHS, we get
$ \Rightarrow \phi {\text{}} = {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)$
We know that, ${\cos ^{ - 1}}\left( { - x} \right) = \pi {\text{}} - {\cos ^{ - 1}}x,x \in \left[ { - 1,1} \right]$. Therefore, we get
$ \Rightarrow \phi {\text{}} = \pi {\text{}} - {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right)$
We know that $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$. So, on replacing, we get
$ \Rightarrow \phi {\text{}} = \pi {\text{}} - {\cos ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right)$
Also, we know ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $. Therefore, we get
$ \Rightarrow \phi {\text{}} = \pi {\text{}} - \dfrac{\pi }{3}$
$ \Rightarrow \phi {\text{}} = \dfrac{{2\pi }}{3}$
Thus, the angle between $P$ and $R$ is $\dfrac{{2\pi }}{3}$.
Therefore, the correct option is C.
Note:
Here, in the given question we have found the value of angle between $P$ and $R$ using the formula $\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}$. If the question was about finding the value of the angle between $Q$ and $R$ we will not apply this formula. We will use $\cos \phi {\text{}} = \dfrac{{Q + P\cos \theta }}{R}$. To solve these type of questions we should know all the required values of standard angles say,${0^\circ }$, ${30^\circ }$, ${60^\circ }$, ${90^\circ }$, ${180^\circ }$, ${270^\circ }$, ${360^\circ }$ respectively for each trigonometric term such as $\sin $, $\cos $, $\tan $, $\cot $, $\sec $, $\cos ec$, etc.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
