
Let PQ be a chord of the parabola \[{{y}^{2}}=4x\]. A circle drawn with PQ as a diameter passes through the vertex V of the parabola. If Area of \[\Delta PVQ\] = 20 \[uni{{t}^{2}}\] then the co – ordinates of P are
(a)(-16, -8)
(b)(-16, 8)
(c)(16, -8)
(d)(16, 8)
Answer
597.9k+ views
Hint: Suppose points P and Q as \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] by using the parametric coordinates for \[{{y}^{2}}=4ax\] (put, a= 1). Angle formed in a semi – circle is \[{{90}^{\circ }}\] i.e. angle at vertex by PQ (diameter) is \[{{90}^{\circ }}\]. So, PV and VQ will be perpendicular to each other. Use area of triangle as,
\[=\dfrac{1}{2}\times \] base \[\times \] height
Complete step-by-step answer:
Use following results to solve the problem further: -
Product of slopes of two perpendicular lines is -1 and the distance between two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as
\[=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}\]
Given equation of parabola in the problem is,
\[{{y}^{2}}=4x-(1)\]
We know PQ is a chord of the parabola \[{{y}^{2}}=4ax\] and a circle is drawn with PQ as a diameter and circle is passing through the vertex V of the parabola.
We know \[{{y}^{2}}=4ax\] is symmetric about the x – axis with vertex as (0, 0). So, the coordinate of point V is (0, 0).
So, we can draw diagram with the help of given information as: -
As we know, the angle formed in a semi – circle is \[{{90}^{\circ }}\]. i.e. angle formed by diameter is \[{{90}^{\circ }}\]. As PQ is a diameter of the circle with center O in the diagram, so \[\angle PVQ={{90}^{\circ }}\] as per the property of the semi – circle.
So, we know area of triangle is given as,
\[=\dfrac{1}{2}\times \] base \[\times \] height – (2)
Hence, area of \[\Delta PVQ\],
\[=\dfrac{1}{2}\times \left( PV \right)\times \left( VQ \right)-(3)\]
Let us suppose the coordinates of points P and Q on the parabola \[{{y}^{2}}=4x\] are \[\left( t_{1}^{2},2{{t}_{1}} \right)\] and \[\left( t_{2}^{2},2{{t}_{2}} \right)\] [We know the parametric coordinates for \[{{y}^{2}}=4x\] are \[\left( a{{t}^{2}},2at \right)\]].
As VP and VQ are perpendicular to each other, it means the product of slopes of them will be -1, because of the relation.
Product of slopes of two perpendicular lines = -1. – (4)
We know slope of a line with the help of two coordinates \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by relation,
Slope \[=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}-(5)\]
Hence, slope of VP \[=\dfrac{2{{t}_{1}}-0}{t_{1}^{2}-0}=\dfrac{2{{t}_{1}}}{t_{1}^{2}}\]
Slope of VP \[=\dfrac{2}{{{t}_{1}}}\]
Similarly, slope of VQ \[=\dfrac{2}{{{t}_{2}}}\]
Hence, we get from equation (4) as,
\[\begin{align}
& \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\
& {{t}_{1}}{{t}_{2}}=-4-(6) \\
\end{align}\]
Now, we need to calculate the distances VP and VQ to get the area from the relation (3).
We know the distance between two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] can be given by distance formula as,
\[=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}-(7)\]
Hence, length of VP
\[\begin{align}
& VP=\sqrt{{{\left( 2{{t}_{1}}-0 \right)}^{2}}+{{\left( t_{1}^{2}-0 \right)}^{2}}} \\
& VP=\sqrt{4t_{1}^{2}+t_{1}^{4}}-(8) \\
\end{align}\]
Similarly, length of VQ
\[\begin{align}
& VQ=\sqrt{{{\left( 2{{t}_{2}}-0 \right)}^{2}}+{{\left( t_{2}^{2}-0 \right)}^{2}}} \\
& VQ=\sqrt{4t_{2}^{2}+t_{2}^{4}}-(9) \\
\end{align}\]
Now, we know area of \[\Delta PVQ\] can be given from the equations (3), (8) and (9) as,
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\times \sqrt{4t_{1}^{2}+t_{1}^{4}}\times \sqrt{4t_{2}^{2}+t_{2}^{4}}\]
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\times \sqrt{\left( 4t_{1}^{2}+t_{1}^{4} \right)\left( 4t_{2}^{2}+t_{2}^{4} \right)}\]
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\times \sqrt{16t_{1}^{2}t_{2}^{2}+4t_{1}^{2}t_{1}^{4}+4t_{1}^{4}t_{2}^{2}+t_{1}^{4}t_{2}^{4}}\]
Put, \[{{t}_{1}}{{t}_{2}}=-4\], from the equation (6). We get,
Area of \[\Delta PVQ\] = \[\dfrac{1}{2}\sqrt{16\times {{\left( -4 \right)}^{2}}+4t_{1}^{2}t_{2}^{2}\left( t_{2}^{2}+t_{1}^{2} \right)+{{\left( -4 \right)}^{4}}}\]
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\sqrt{256+4\times {{\left( -4 \right)}^{2}}\left( t_{1}^{2}+t_{2}^{2} \right)+256}\]
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\sqrt{512+64\left( t_{1}^{2}+t_{2}^{2} \right)}\]
We know the area of \[\Delta PVQ\] from the problem as 20 square units. So, we get,
\[\begin{align}
& 20=\dfrac{1}{2}\sqrt{512+64\left( t_{1}^{2}+t_{2}^{2} \right)} \\
& 40=\sqrt{512+64\left( t_{1}^{2}+t_{2}^{2} \right)} \\
\end{align}\]
Squaring both sides of the above equation, we get,
\[\begin{align}
& 1600=512+64\left( t_{1}^{2}+t_{2}^{2} \right) \\
& \dfrac{1600-512}{64}=t_{1}^{2}+t_{2}^{2} \\
& \dfrac{1088}{64}=t_{1}^{2}+t_{2}^{2} \\
& 17=t_{1}^{2}+t_{2}^{2} \\
\end{align}\]
Put, \[{{t}_{2}}=\dfrac{-4}{{{t}_{1}}}\] from the equation (6). We get,
\[\begin{align}
& 17=t_{1}^{2}+{{\left( \dfrac{-4}{{{t}_{1}}} \right)}^{2}} \\
& 17=t_{1}^{2}+\dfrac{16}{t_{1}^{2}} \\
\end{align}\]
Adding 8 to both sides, we get,
\[\begin{align}
& 17+8=t_{1}^{2}+\dfrac{16}{t_{1}^{2}}+8 \\
& 25={{\left( {{t}_{1}} \right)}^{2}}+{{\left( \dfrac{4}{{{t}_{1}}} \right)}^{2}}+2\times \dfrac{4}{{{t}_{1}}}\times {{t}_{1}} \\
\end{align}\]
So, we get,
\[{{\left( {{t}_{1}}+\dfrac{4}{{{t}_{1}}} \right)}^{2}}=25\]
Taking square root to both sides, we get,
\[{{t}_{1}}+\dfrac{4}{{{t}_{1}}}=5\] or \[{{t}_{1}}+\dfrac{4}{{{t}_{1}}}=-5\]
Case 1: \[{{t}_{1}}+\dfrac{4}{{{t}_{1}}}=5\]
\[\begin{align}
& t_{1}^{2}+4=5{{t}_{1}} \\
& t_{1}^{2}-5{{t}_{1}}+4=0 \\
& {{t}_{1}}-4{{t}_{1}}-{{t}_{1}}+4=0 \\
& {{t}_{1}}\left( {{t}_{1}}-4 \right)-1\left( {{t}_{1}}-4 \right)=0 \\
& \left( {{t}_{1}}-1 \right)\left( {{t}_{1}}-4 \right)=0 \\
\end{align}\]
\[{{t}_{1}}=1\] or \[{{t}_{1}}=4\]
Case 2: \[{{t}_{1}}+\dfrac{4}{{{t}_{1}}}=-5\]
\[\begin{align}
& t_{1}^{2}+4=-5{{t}_{1}} \\
& t_{1}^{2}+5{{t}_{1}}+4=0 \\
& {{t}_{1}}+4{{t}_{1}}+{{t}_{1}}+4=0 \\
& {{t}_{1}}\left( {{t}_{1}}+4 \right)+1\left( {{t}_{1}}+4 \right)=0 \\
& \left( {{t}_{1}}+1 \right)\left( {{t}_{1}}+4 \right)=0 \\
\end{align}\]
Hence, coordinates of P, for case 1 are given as \[\left( t_{1}^{2},2{{t}_{1}} \right)\].
Case 1: \[{{t}_{1}}=1\]
Coordinates are (1, 2)
Or
\[{{t}_{1}}=4\]
Coordinates are (16, 8)
Case 2: \[{{t}_{1}}=-1\]
Coordinates are (1, -2)
Or
\[{{t}_{1}}=-4\]
Coordinates are (16, -8)
Hence options (c) and (d) are the possible coordinates of B.
Note: One may use the direct result that if two points are subtending a right angle at vertex (0, 0) then, \[{{t}_{1}}{{t}_{2}}=-4\]. Where points \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] for the parabola, \[{{y}^{2}}=4ax\].
Another approach for the question would be that we can use formula for calculating area of triangle in terms of the coordinates as
\[=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\]
Where \[\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)\] are coordinates of vertices of any triangle.
\[=\dfrac{1}{2}\times \] base \[\times \] height
Complete step-by-step answer:
Use following results to solve the problem further: -
Product of slopes of two perpendicular lines is -1 and the distance between two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as
\[=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}\]
Given equation of parabola in the problem is,
\[{{y}^{2}}=4x-(1)\]
We know PQ is a chord of the parabola \[{{y}^{2}}=4ax\] and a circle is drawn with PQ as a diameter and circle is passing through the vertex V of the parabola.
We know \[{{y}^{2}}=4ax\] is symmetric about the x – axis with vertex as (0, 0). So, the coordinate of point V is (0, 0).
So, we can draw diagram with the help of given information as: -
As we know, the angle formed in a semi – circle is \[{{90}^{\circ }}\]. i.e. angle formed by diameter is \[{{90}^{\circ }}\]. As PQ is a diameter of the circle with center O in the diagram, so \[\angle PVQ={{90}^{\circ }}\] as per the property of the semi – circle.
So, we know area of triangle is given as,
\[=\dfrac{1}{2}\times \] base \[\times \] height – (2)
Hence, area of \[\Delta PVQ\],
\[=\dfrac{1}{2}\times \left( PV \right)\times \left( VQ \right)-(3)\]
Let us suppose the coordinates of points P and Q on the parabola \[{{y}^{2}}=4x\] are \[\left( t_{1}^{2},2{{t}_{1}} \right)\] and \[\left( t_{2}^{2},2{{t}_{2}} \right)\] [We know the parametric coordinates for \[{{y}^{2}}=4x\] are \[\left( a{{t}^{2}},2at \right)\]].
As VP and VQ are perpendicular to each other, it means the product of slopes of them will be -1, because of the relation.
Product of slopes of two perpendicular lines = -1. – (4)
We know slope of a line with the help of two coordinates \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by relation,
Slope \[=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}-(5)\]
Hence, slope of VP \[=\dfrac{2{{t}_{1}}-0}{t_{1}^{2}-0}=\dfrac{2{{t}_{1}}}{t_{1}^{2}}\]
Slope of VP \[=\dfrac{2}{{{t}_{1}}}\]
Similarly, slope of VQ \[=\dfrac{2}{{{t}_{2}}}\]
Hence, we get from equation (4) as,
\[\begin{align}
& \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\
& {{t}_{1}}{{t}_{2}}=-4-(6) \\
\end{align}\]
Now, we need to calculate the distances VP and VQ to get the area from the relation (3).
We know the distance between two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] can be given by distance formula as,
\[=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}-(7)\]
Hence, length of VP
\[\begin{align}
& VP=\sqrt{{{\left( 2{{t}_{1}}-0 \right)}^{2}}+{{\left( t_{1}^{2}-0 \right)}^{2}}} \\
& VP=\sqrt{4t_{1}^{2}+t_{1}^{4}}-(8) \\
\end{align}\]
Similarly, length of VQ
\[\begin{align}
& VQ=\sqrt{{{\left( 2{{t}_{2}}-0 \right)}^{2}}+{{\left( t_{2}^{2}-0 \right)}^{2}}} \\
& VQ=\sqrt{4t_{2}^{2}+t_{2}^{4}}-(9) \\
\end{align}\]
Now, we know area of \[\Delta PVQ\] can be given from the equations (3), (8) and (9) as,
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\times \sqrt{4t_{1}^{2}+t_{1}^{4}}\times \sqrt{4t_{2}^{2}+t_{2}^{4}}\]
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\times \sqrt{\left( 4t_{1}^{2}+t_{1}^{4} \right)\left( 4t_{2}^{2}+t_{2}^{4} \right)}\]
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\times \sqrt{16t_{1}^{2}t_{2}^{2}+4t_{1}^{2}t_{1}^{4}+4t_{1}^{4}t_{2}^{2}+t_{1}^{4}t_{2}^{4}}\]
Put, \[{{t}_{1}}{{t}_{2}}=-4\], from the equation (6). We get,
Area of \[\Delta PVQ\] = \[\dfrac{1}{2}\sqrt{16\times {{\left( -4 \right)}^{2}}+4t_{1}^{2}t_{2}^{2}\left( t_{2}^{2}+t_{1}^{2} \right)+{{\left( -4 \right)}^{4}}}\]
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\sqrt{256+4\times {{\left( -4 \right)}^{2}}\left( t_{1}^{2}+t_{2}^{2} \right)+256}\]
Area of \[\Delta PVQ\] \[=\dfrac{1}{2}\sqrt{512+64\left( t_{1}^{2}+t_{2}^{2} \right)}\]
We know the area of \[\Delta PVQ\] from the problem as 20 square units. So, we get,
\[\begin{align}
& 20=\dfrac{1}{2}\sqrt{512+64\left( t_{1}^{2}+t_{2}^{2} \right)} \\
& 40=\sqrt{512+64\left( t_{1}^{2}+t_{2}^{2} \right)} \\
\end{align}\]
Squaring both sides of the above equation, we get,
\[\begin{align}
& 1600=512+64\left( t_{1}^{2}+t_{2}^{2} \right) \\
& \dfrac{1600-512}{64}=t_{1}^{2}+t_{2}^{2} \\
& \dfrac{1088}{64}=t_{1}^{2}+t_{2}^{2} \\
& 17=t_{1}^{2}+t_{2}^{2} \\
\end{align}\]
Put, \[{{t}_{2}}=\dfrac{-4}{{{t}_{1}}}\] from the equation (6). We get,
\[\begin{align}
& 17=t_{1}^{2}+{{\left( \dfrac{-4}{{{t}_{1}}} \right)}^{2}} \\
& 17=t_{1}^{2}+\dfrac{16}{t_{1}^{2}} \\
\end{align}\]
Adding 8 to both sides, we get,
\[\begin{align}
& 17+8=t_{1}^{2}+\dfrac{16}{t_{1}^{2}}+8 \\
& 25={{\left( {{t}_{1}} \right)}^{2}}+{{\left( \dfrac{4}{{{t}_{1}}} \right)}^{2}}+2\times \dfrac{4}{{{t}_{1}}}\times {{t}_{1}} \\
\end{align}\]
So, we get,
\[{{\left( {{t}_{1}}+\dfrac{4}{{{t}_{1}}} \right)}^{2}}=25\]
Taking square root to both sides, we get,
\[{{t}_{1}}+\dfrac{4}{{{t}_{1}}}=5\] or \[{{t}_{1}}+\dfrac{4}{{{t}_{1}}}=-5\]
Case 1: \[{{t}_{1}}+\dfrac{4}{{{t}_{1}}}=5\]
\[\begin{align}
& t_{1}^{2}+4=5{{t}_{1}} \\
& t_{1}^{2}-5{{t}_{1}}+4=0 \\
& {{t}_{1}}-4{{t}_{1}}-{{t}_{1}}+4=0 \\
& {{t}_{1}}\left( {{t}_{1}}-4 \right)-1\left( {{t}_{1}}-4 \right)=0 \\
& \left( {{t}_{1}}-1 \right)\left( {{t}_{1}}-4 \right)=0 \\
\end{align}\]
\[{{t}_{1}}=1\] or \[{{t}_{1}}=4\]
Case 2: \[{{t}_{1}}+\dfrac{4}{{{t}_{1}}}=-5\]
\[\begin{align}
& t_{1}^{2}+4=-5{{t}_{1}} \\
& t_{1}^{2}+5{{t}_{1}}+4=0 \\
& {{t}_{1}}+4{{t}_{1}}+{{t}_{1}}+4=0 \\
& {{t}_{1}}\left( {{t}_{1}}+4 \right)+1\left( {{t}_{1}}+4 \right)=0 \\
& \left( {{t}_{1}}+1 \right)\left( {{t}_{1}}+4 \right)=0 \\
\end{align}\]
Hence, coordinates of P, for case 1 are given as \[\left( t_{1}^{2},2{{t}_{1}} \right)\].
Case 1: \[{{t}_{1}}=1\]
Coordinates are (1, 2)
Or
\[{{t}_{1}}=4\]
Coordinates are (16, 8)
Case 2: \[{{t}_{1}}=-1\]
Coordinates are (1, -2)
Or
\[{{t}_{1}}=-4\]
Coordinates are (16, -8)
Hence options (c) and (d) are the possible coordinates of B.
Note: One may use the direct result that if two points are subtending a right angle at vertex (0, 0) then, \[{{t}_{1}}{{t}_{2}}=-4\]. Where points \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] for the parabola, \[{{y}^{2}}=4ax\].
Another approach for the question would be that we can use formula for calculating area of triangle in terms of the coordinates as
\[=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\]
Where \[\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)\] are coordinates of vertices of any triangle.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

