
Let $p,q$ and $r$ be real numbers $\left( {p \ne q,r \ne 0} \right)$, such that the roots of the equation $\dfrac{1}{{x + p}} + \dfrac{1}{{x + q}} = \dfrac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to:
(A) ${p^2} + {q^2} + {r^2}$
(B) ${p^2} + {q^2}$
(C) $2\left( {{p^2} + {q^2}} \right)$
(D) \[\dfrac{{{p^2} + {q^2}}}{2}\]
Answer
581.1k+ views
Hint: First of all we convert the given equation in the standard quadratic equation, i.e., $a{x^2} + bx + c = 0$ and find $a,b,c$ to find out the sum and multiplication of the roots.
Complete step-by-step answer:
Given equation is: $\dfrac{1}{{x + p}} + \dfrac{1}{{x + q}} = \dfrac{1}{r}$
Now solving the given equation by taking LCM,
$\dfrac{{\left( {x + q} \right) + \left( {x + p} \right)}}{{\left( {x + p} \right)\left( {x + q} \right)}} = \dfrac{1}{r}$
$ \Rightarrow r\left( {x + q} \right) + r\left( {x + p} \right) = \left( {x + p} \right)\left( {x + q} \right)$
$ \Rightarrow rx + rq + rx + rp = {x^2} + qx + px + pq$
$ \Rightarrow 2rx + r\left( {p + q} \right) = {x^2} + \left( {p + q} \right)x + pq$
$ \Rightarrow {x^2} + \left( {p + q} \right)x - 2rx + pq - r\left( {p + q} \right) = 0$
$ \Rightarrow {x^2} + \left( {p + q - 2r} \right)x + pq - r\left( {p + q} \right) = 0$….. (1)
On comparing the equation (1) with the standard quadratic equation, i.e., $a{x^2} + bx + c = 0$; we get-
$a = 1,b = \left( {p + q - 2r} \right),c = pq - r\left( {p + q} \right)$
Let $\alpha $ and $\beta $ be the roots of a given equation, which are equal in magnitude but opposite in sign, i.e., $\beta = - \alpha $.
Now, sum of roots, \[\alpha + \beta = \dfrac{{ - b}}{a}\]
$ \Rightarrow \alpha + \left( { - \alpha } \right) = \dfrac{{ - \left( {p + q - 2r} \right)}}{1}$
$ \Rightarrow 0 = - p - q + 2r$
$ \Rightarrow p + q = 2r$
$ \Rightarrow r = \dfrac{{p + q}}{2}$ …. (1)
Multiplication of roots, $\alpha \beta = \dfrac{c}{a}$
$ \Rightarrow \alpha \beta = \dfrac{{pq - r\left( {p + q} \right)}}{1}$
$ \Rightarrow \alpha \beta = pq - \dfrac{{\left( {p + q} \right)}}{2}\left( {p + q} \right)$ [from(1)]
$ \Rightarrow \alpha \beta = pq - \dfrac{{{{\left( {p + q} \right)}^2}}}{2}$
$ \Rightarrow \alpha \beta = \dfrac{{2pq - \left( {{p^2} + {q^2} + 2pq} \right)}}{2}$
$ \Rightarrow \alpha \beta = \dfrac{{ - {p^2} - {q^2}}}{2}$
We have to find the sum of squares of these roots i.e., ${\alpha ^2} + {\beta ^2}$.
We know that, ${\left( {\alpha + \beta } \right)^2} = {\alpha ^2} + {\beta ^2} + 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {\left( {\alpha + \beta } \right)^2} - 2\alpha \beta $
Since $\beta = - \alpha $ $ \Rightarrow $ ${\left( {\alpha + \beta } \right)^2} = 0$
$\therefore {\alpha ^2} + {\beta ^2} = - 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = - 2\left( {\dfrac{{ - {p^2} - {q^2}}}{2}} \right)$
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {p^2} + {q^2}$
Hence, option (B) is the correct answer.
Note: Here roots of the equation are equal in magnitude but opposite in sign, i.e., $\beta = - \alpha $.
Therefore, $\alpha + \beta = \alpha + \left( { - \alpha } \right) = 0$ and $\alpha \beta = \alpha \left( { - \alpha } \right) = - {\alpha ^2}$.
Complete step-by-step answer:
Given equation is: $\dfrac{1}{{x + p}} + \dfrac{1}{{x + q}} = \dfrac{1}{r}$
Now solving the given equation by taking LCM,
$\dfrac{{\left( {x + q} \right) + \left( {x + p} \right)}}{{\left( {x + p} \right)\left( {x + q} \right)}} = \dfrac{1}{r}$
$ \Rightarrow r\left( {x + q} \right) + r\left( {x + p} \right) = \left( {x + p} \right)\left( {x + q} \right)$
$ \Rightarrow rx + rq + rx + rp = {x^2} + qx + px + pq$
$ \Rightarrow 2rx + r\left( {p + q} \right) = {x^2} + \left( {p + q} \right)x + pq$
$ \Rightarrow {x^2} + \left( {p + q} \right)x - 2rx + pq - r\left( {p + q} \right) = 0$
$ \Rightarrow {x^2} + \left( {p + q - 2r} \right)x + pq - r\left( {p + q} \right) = 0$….. (1)
On comparing the equation (1) with the standard quadratic equation, i.e., $a{x^2} + bx + c = 0$; we get-
$a = 1,b = \left( {p + q - 2r} \right),c = pq - r\left( {p + q} \right)$
Let $\alpha $ and $\beta $ be the roots of a given equation, which are equal in magnitude but opposite in sign, i.e., $\beta = - \alpha $.
Now, sum of roots, \[\alpha + \beta = \dfrac{{ - b}}{a}\]
$ \Rightarrow \alpha + \left( { - \alpha } \right) = \dfrac{{ - \left( {p + q - 2r} \right)}}{1}$
$ \Rightarrow 0 = - p - q + 2r$
$ \Rightarrow p + q = 2r$
$ \Rightarrow r = \dfrac{{p + q}}{2}$ …. (1)
Multiplication of roots, $\alpha \beta = \dfrac{c}{a}$
$ \Rightarrow \alpha \beta = \dfrac{{pq - r\left( {p + q} \right)}}{1}$
$ \Rightarrow \alpha \beta = pq - \dfrac{{\left( {p + q} \right)}}{2}\left( {p + q} \right)$ [from(1)]
$ \Rightarrow \alpha \beta = pq - \dfrac{{{{\left( {p + q} \right)}^2}}}{2}$
$ \Rightarrow \alpha \beta = \dfrac{{2pq - \left( {{p^2} + {q^2} + 2pq} \right)}}{2}$
$ \Rightarrow \alpha \beta = \dfrac{{ - {p^2} - {q^2}}}{2}$
We have to find the sum of squares of these roots i.e., ${\alpha ^2} + {\beta ^2}$.
We know that, ${\left( {\alpha + \beta } \right)^2} = {\alpha ^2} + {\beta ^2} + 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {\left( {\alpha + \beta } \right)^2} - 2\alpha \beta $
Since $\beta = - \alpha $ $ \Rightarrow $ ${\left( {\alpha + \beta } \right)^2} = 0$
$\therefore {\alpha ^2} + {\beta ^2} = - 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = - 2\left( {\dfrac{{ - {p^2} - {q^2}}}{2}} \right)$
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {p^2} + {q^2}$
Hence, option (B) is the correct answer.
Note: Here roots of the equation are equal in magnitude but opposite in sign, i.e., $\beta = - \alpha $.
Therefore, $\alpha + \beta = \alpha + \left( { - \alpha } \right) = 0$ and $\alpha \beta = \alpha \left( { - \alpha } \right) = - {\alpha ^2}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

