
Let $p,q$ and $r$ be real numbers $\left( {p \ne q,r \ne 0} \right)$, such that the roots of the equation $\dfrac{1}{{x + p}} + \dfrac{1}{{x + q}} = \dfrac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to:
(A) ${p^2} + {q^2} + {r^2}$
(B) ${p^2} + {q^2}$
(C) $2\left( {{p^2} + {q^2}} \right)$
(D) \[\dfrac{{{p^2} + {q^2}}}{2}\]
Answer
555.3k+ views
Hint: First of all we convert the given equation in the standard quadratic equation, i.e., $a{x^2} + bx + c = 0$ and find $a,b,c$ to find out the sum and multiplication of the roots.
Complete step-by-step answer:
Given equation is: $\dfrac{1}{{x + p}} + \dfrac{1}{{x + q}} = \dfrac{1}{r}$
Now solving the given equation by taking LCM,
$\dfrac{{\left( {x + q} \right) + \left( {x + p} \right)}}{{\left( {x + p} \right)\left( {x + q} \right)}} = \dfrac{1}{r}$
$ \Rightarrow r\left( {x + q} \right) + r\left( {x + p} \right) = \left( {x + p} \right)\left( {x + q} \right)$
$ \Rightarrow rx + rq + rx + rp = {x^2} + qx + px + pq$
$ \Rightarrow 2rx + r\left( {p + q} \right) = {x^2} + \left( {p + q} \right)x + pq$
$ \Rightarrow {x^2} + \left( {p + q} \right)x - 2rx + pq - r\left( {p + q} \right) = 0$
$ \Rightarrow {x^2} + \left( {p + q - 2r} \right)x + pq - r\left( {p + q} \right) = 0$….. (1)
On comparing the equation (1) with the standard quadratic equation, i.e., $a{x^2} + bx + c = 0$; we get-
$a = 1,b = \left( {p + q - 2r} \right),c = pq - r\left( {p + q} \right)$
Let $\alpha $ and $\beta $ be the roots of a given equation, which are equal in magnitude but opposite in sign, i.e., $\beta = - \alpha $.
Now, sum of roots, \[\alpha + \beta = \dfrac{{ - b}}{a}\]
$ \Rightarrow \alpha + \left( { - \alpha } \right) = \dfrac{{ - \left( {p + q - 2r} \right)}}{1}$
$ \Rightarrow 0 = - p - q + 2r$
$ \Rightarrow p + q = 2r$
$ \Rightarrow r = \dfrac{{p + q}}{2}$ …. (1)
Multiplication of roots, $\alpha \beta = \dfrac{c}{a}$
$ \Rightarrow \alpha \beta = \dfrac{{pq - r\left( {p + q} \right)}}{1}$
$ \Rightarrow \alpha \beta = pq - \dfrac{{\left( {p + q} \right)}}{2}\left( {p + q} \right)$ [from(1)]
$ \Rightarrow \alpha \beta = pq - \dfrac{{{{\left( {p + q} \right)}^2}}}{2}$
$ \Rightarrow \alpha \beta = \dfrac{{2pq - \left( {{p^2} + {q^2} + 2pq} \right)}}{2}$
$ \Rightarrow \alpha \beta = \dfrac{{ - {p^2} - {q^2}}}{2}$
We have to find the sum of squares of these roots i.e., ${\alpha ^2} + {\beta ^2}$.
We know that, ${\left( {\alpha + \beta } \right)^2} = {\alpha ^2} + {\beta ^2} + 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {\left( {\alpha + \beta } \right)^2} - 2\alpha \beta $
Since $\beta = - \alpha $ $ \Rightarrow $ ${\left( {\alpha + \beta } \right)^2} = 0$
$\therefore {\alpha ^2} + {\beta ^2} = - 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = - 2\left( {\dfrac{{ - {p^2} - {q^2}}}{2}} \right)$
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {p^2} + {q^2}$
Hence, option (B) is the correct answer.
Note: Here roots of the equation are equal in magnitude but opposite in sign, i.e., $\beta = - \alpha $.
Therefore, $\alpha + \beta = \alpha + \left( { - \alpha } \right) = 0$ and $\alpha \beta = \alpha \left( { - \alpha } \right) = - {\alpha ^2}$.
Complete step-by-step answer:
Given equation is: $\dfrac{1}{{x + p}} + \dfrac{1}{{x + q}} = \dfrac{1}{r}$
Now solving the given equation by taking LCM,
$\dfrac{{\left( {x + q} \right) + \left( {x + p} \right)}}{{\left( {x + p} \right)\left( {x + q} \right)}} = \dfrac{1}{r}$
$ \Rightarrow r\left( {x + q} \right) + r\left( {x + p} \right) = \left( {x + p} \right)\left( {x + q} \right)$
$ \Rightarrow rx + rq + rx + rp = {x^2} + qx + px + pq$
$ \Rightarrow 2rx + r\left( {p + q} \right) = {x^2} + \left( {p + q} \right)x + pq$
$ \Rightarrow {x^2} + \left( {p + q} \right)x - 2rx + pq - r\left( {p + q} \right) = 0$
$ \Rightarrow {x^2} + \left( {p + q - 2r} \right)x + pq - r\left( {p + q} \right) = 0$….. (1)
On comparing the equation (1) with the standard quadratic equation, i.e., $a{x^2} + bx + c = 0$; we get-
$a = 1,b = \left( {p + q - 2r} \right),c = pq - r\left( {p + q} \right)$
Let $\alpha $ and $\beta $ be the roots of a given equation, which are equal in magnitude but opposite in sign, i.e., $\beta = - \alpha $.
Now, sum of roots, \[\alpha + \beta = \dfrac{{ - b}}{a}\]
$ \Rightarrow \alpha + \left( { - \alpha } \right) = \dfrac{{ - \left( {p + q - 2r} \right)}}{1}$
$ \Rightarrow 0 = - p - q + 2r$
$ \Rightarrow p + q = 2r$
$ \Rightarrow r = \dfrac{{p + q}}{2}$ …. (1)
Multiplication of roots, $\alpha \beta = \dfrac{c}{a}$
$ \Rightarrow \alpha \beta = \dfrac{{pq - r\left( {p + q} \right)}}{1}$
$ \Rightarrow \alpha \beta = pq - \dfrac{{\left( {p + q} \right)}}{2}\left( {p + q} \right)$ [from(1)]
$ \Rightarrow \alpha \beta = pq - \dfrac{{{{\left( {p + q} \right)}^2}}}{2}$
$ \Rightarrow \alpha \beta = \dfrac{{2pq - \left( {{p^2} + {q^2} + 2pq} \right)}}{2}$
$ \Rightarrow \alpha \beta = \dfrac{{ - {p^2} - {q^2}}}{2}$
We have to find the sum of squares of these roots i.e., ${\alpha ^2} + {\beta ^2}$.
We know that, ${\left( {\alpha + \beta } \right)^2} = {\alpha ^2} + {\beta ^2} + 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {\left( {\alpha + \beta } \right)^2} - 2\alpha \beta $
Since $\beta = - \alpha $ $ \Rightarrow $ ${\left( {\alpha + \beta } \right)^2} = 0$
$\therefore {\alpha ^2} + {\beta ^2} = - 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = - 2\left( {\dfrac{{ - {p^2} - {q^2}}}{2}} \right)$
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {p^2} + {q^2}$
Hence, option (B) is the correct answer.
Note: Here roots of the equation are equal in magnitude but opposite in sign, i.e., $\beta = - \alpha $.
Therefore, $\alpha + \beta = \alpha + \left( { - \alpha } \right) = 0$ and $\alpha \beta = \alpha \left( { - \alpha } \right) = - {\alpha ^2}$.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

