
Let \[P=\left[ {{a}_{ij}} \right]\] be a \[3\times 3\] matric and let \[Q=\left( {{b}_{ij}} \right)\] where \[{{b}_{ij}}={{2}^{i+j}}{{a}_{ij}}\] for \[1\le i,j\le 3\]. If the determinant of P is 2, then the determinant of the matrix Q is?
(a) \[{{2}^{10}}\]
(b) \[{{2}^{11}}\]
(c) \[{{2}^{12}}\]
(d) \[{{2}^{13}}\]
Answer
582.6k+ views
Hint: To solve this question, we need to know the concept of determinant and we should know a few properties of determinant like we can take anything common from any row or column of the determinant. For example,
\[\left| \begin{matrix}
m{{a}_{1}} & m{{b}_{1}} & m{{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|=m\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
By using these properties, we can find the required answer. In this question, we have to find the determinant of the matrix Q which is equal to \[{{b}_{ij}}\] and \[{{b}_{ij}}={{2}^{i+j}}{{a}_{ij}}\] where \[\left[ {{a}_{ij}} \right]=P\].
Complete step by step solution:
Now, we have been given that \[P=\left[ {{a}_{ij}} \right]\]. So, we can write P as
\[\left| P \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\]
And similarly, we can write matrix Q as,
\[\left| Q \right|=\left| \begin{matrix}
{{b}_{11}} & {{b}_{12}} & {{b}_{13}} \\
{{b}_{21}} & {{b}_{22}} & {{b}_{23}} \\
{{b}_{31}} & {{b}_{32}} & {{b}_{33}} \\
\end{matrix} \right|\]
Now, we will put the values of \[{{b}_{ij}}\] using the formula \[{{b}_{ij}}={{2}^{i+j}}{{a}_{ij}}\]. So, we will write the matrix Q as,
\[\left| Q \right|=\left| \begin{matrix}
{{2}^{1+1}}{{a}_{11}} & {{2}^{1+2}}{{a}_{12}} & {{2}^{1+3}}{{a}_{13}} \\
{{2}^{2+1}}{{a}_{21}} & {{2}^{2+2}}{{a}_{22}} & {{2}^{2+3}}{{a}_{23}} \\
{{2}^{3+1}}{{a}_{31}} & {{2}^{3+2}}{{a}_{32}} & {{2}^{3+3}}{{a}_{33}} \\
\end{matrix} \right|\]
We can further write it as,
\[\left| Q \right|=\left| \begin{matrix}
{{2}^{2}}{{a}_{11}} & {{2}^{3}}{{a}_{12}} & {{2}^{4}}{{a}_{13}} \\
{{2}^{3}}{{a}_{21}} & {{2}^{4}}{{a}_{22}} & {{2}^{5}}{{a}_{23}} \\
{{2}^{4}}{{a}_{31}} & {{2}^{5}}{{a}_{32}} & {{2}^{6}}{{a}_{33}} \\
\end{matrix} \right|\]
Now, we know that we can take anything common from any row or column of the determinant. For example, we can take m common from
\[\left| \begin{matrix}
m{{a}_{1}} & m{{b}_{1}} & m{{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|=m\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
Now, we will take \[{{2}^{2}},{{2}^{3}}\] and \[{{2}^{4}}\] common from first, second, and third-row respectively. So, we can write
\[\left| Q \right|={{2}^{2}}\times {{2}^{3}}\times {{2}^{4}}\left| \begin{matrix}
{{a}_{11}} & 2{{a}_{12}} & {{2}^{2}}{{a}_{13}} \\
{{a}_{21}} & 2{{a}_{22}} & {{2}^{2}}{{a}_{23}} \\
{{a}_{31}} & 2{{a}_{32}} & {{2}^{2}}{{a}_{33}} \\
\end{matrix} \right|\]
\[\left| Q \right|={{2}^{2+3+4}}\left| \begin{matrix}
{{a}_{11}} & 2{{a}_{12}} & {{2}^{2}}{{a}_{13}} \\
{{a}_{21}} & 2{{a}_{22}} & {{2}^{2}}{{a}_{23}} \\
{{a}_{31}} & 2{{a}_{32}} & {{2}^{2}}{{a}_{33}} \\
\end{matrix} \right|\]
\[\left| Q \right|={{2}^{9}}\left| \begin{matrix}
{{a}_{11}} & 2{{a}_{12}} & {{2}^{2}}{{a}_{13}} \\
{{a}_{21}} & 2{{a}_{22}} & {{2}^{2}}{{a}_{23}} \\
{{a}_{31}} & 2{{a}_{32}} & {{2}^{2}}{{a}_{33}} \\
\end{matrix} \right|\]
Now, we will take 2 and \[{{2}^{2}}\] common from the second and third columns respectively. So, we will get,
\[\left| Q \right|={{2}^{9}}\times 2\times {{2}^{2}}\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\]
And we know that,
\[\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|=\left| P \right|\]
So, we can write
\[\left| Q \right|={{2}^{9+1+2}}\left| P \right|\]
\[\left| Q \right|={{2}^{12}}\left| P \right|\]
Now, we have got the relation between |Q| and |P| and to find the value of |Q| we need to know the value of |P| and in the question, we have been given that |P|= 2. Therefore, we get,
\[\left| Q \right|={{2}^{12}}\times 2\]
\[\left| Q \right|={{2}^{13}}\]
Hence, option (d) is the right answer to this question.
Note: To solve this question, we need to remember that we can express \[\left| \begin{matrix}
m{{a}_{11}} & m{{a}_{12}} & m{{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\] as \[m\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\] , and similarly, we can express \[\left| \begin{matrix}
n{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
n{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
n{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\] as \[n\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\]. Also, there are possibilities that in a hurry we may forget to put the value of |P| and without putting that we will choose the wrong answer and loose marks.
\[\left| \begin{matrix}
m{{a}_{1}} & m{{b}_{1}} & m{{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|=m\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
By using these properties, we can find the required answer. In this question, we have to find the determinant of the matrix Q which is equal to \[{{b}_{ij}}\] and \[{{b}_{ij}}={{2}^{i+j}}{{a}_{ij}}\] where \[\left[ {{a}_{ij}} \right]=P\].
Complete step by step solution:
Now, we have been given that \[P=\left[ {{a}_{ij}} \right]\]. So, we can write P as
\[\left| P \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\]
And similarly, we can write matrix Q as,
\[\left| Q \right|=\left| \begin{matrix}
{{b}_{11}} & {{b}_{12}} & {{b}_{13}} \\
{{b}_{21}} & {{b}_{22}} & {{b}_{23}} \\
{{b}_{31}} & {{b}_{32}} & {{b}_{33}} \\
\end{matrix} \right|\]
Now, we will put the values of \[{{b}_{ij}}\] using the formula \[{{b}_{ij}}={{2}^{i+j}}{{a}_{ij}}\]. So, we will write the matrix Q as,
\[\left| Q \right|=\left| \begin{matrix}
{{2}^{1+1}}{{a}_{11}} & {{2}^{1+2}}{{a}_{12}} & {{2}^{1+3}}{{a}_{13}} \\
{{2}^{2+1}}{{a}_{21}} & {{2}^{2+2}}{{a}_{22}} & {{2}^{2+3}}{{a}_{23}} \\
{{2}^{3+1}}{{a}_{31}} & {{2}^{3+2}}{{a}_{32}} & {{2}^{3+3}}{{a}_{33}} \\
\end{matrix} \right|\]
We can further write it as,
\[\left| Q \right|=\left| \begin{matrix}
{{2}^{2}}{{a}_{11}} & {{2}^{3}}{{a}_{12}} & {{2}^{4}}{{a}_{13}} \\
{{2}^{3}}{{a}_{21}} & {{2}^{4}}{{a}_{22}} & {{2}^{5}}{{a}_{23}} \\
{{2}^{4}}{{a}_{31}} & {{2}^{5}}{{a}_{32}} & {{2}^{6}}{{a}_{33}} \\
\end{matrix} \right|\]
Now, we know that we can take anything common from any row or column of the determinant. For example, we can take m common from
\[\left| \begin{matrix}
m{{a}_{1}} & m{{b}_{1}} & m{{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|=m\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
Now, we will take \[{{2}^{2}},{{2}^{3}}\] and \[{{2}^{4}}\] common from first, second, and third-row respectively. So, we can write
\[\left| Q \right|={{2}^{2}}\times {{2}^{3}}\times {{2}^{4}}\left| \begin{matrix}
{{a}_{11}} & 2{{a}_{12}} & {{2}^{2}}{{a}_{13}} \\
{{a}_{21}} & 2{{a}_{22}} & {{2}^{2}}{{a}_{23}} \\
{{a}_{31}} & 2{{a}_{32}} & {{2}^{2}}{{a}_{33}} \\
\end{matrix} \right|\]
\[\left| Q \right|={{2}^{2+3+4}}\left| \begin{matrix}
{{a}_{11}} & 2{{a}_{12}} & {{2}^{2}}{{a}_{13}} \\
{{a}_{21}} & 2{{a}_{22}} & {{2}^{2}}{{a}_{23}} \\
{{a}_{31}} & 2{{a}_{32}} & {{2}^{2}}{{a}_{33}} \\
\end{matrix} \right|\]
\[\left| Q \right|={{2}^{9}}\left| \begin{matrix}
{{a}_{11}} & 2{{a}_{12}} & {{2}^{2}}{{a}_{13}} \\
{{a}_{21}} & 2{{a}_{22}} & {{2}^{2}}{{a}_{23}} \\
{{a}_{31}} & 2{{a}_{32}} & {{2}^{2}}{{a}_{33}} \\
\end{matrix} \right|\]
Now, we will take 2 and \[{{2}^{2}}\] common from the second and third columns respectively. So, we will get,
\[\left| Q \right|={{2}^{9}}\times 2\times {{2}^{2}}\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\]
And we know that,
\[\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|=\left| P \right|\]
So, we can write
\[\left| Q \right|={{2}^{9+1+2}}\left| P \right|\]
\[\left| Q \right|={{2}^{12}}\left| P \right|\]
Now, we have got the relation between |Q| and |P| and to find the value of |Q| we need to know the value of |P| and in the question, we have been given that |P|= 2. Therefore, we get,
\[\left| Q \right|={{2}^{12}}\times 2\]
\[\left| Q \right|={{2}^{13}}\]
Hence, option (d) is the right answer to this question.
Note: To solve this question, we need to remember that we can express \[\left| \begin{matrix}
m{{a}_{11}} & m{{a}_{12}} & m{{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\] as \[m\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\] , and similarly, we can express \[\left| \begin{matrix}
n{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
n{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
n{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\] as \[n\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|\]. Also, there are possibilities that in a hurry we may forget to put the value of |P| and without putting that we will choose the wrong answer and loose marks.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

