
Let $ P $ be any point on a directrix of an ellipse of eccentricity $ e $ . $ S $ be the corresponding focus and $ C $ the centre of the ellipse. The line $ PC $ meets the ellipse at $ A $ . The angle between $ PS $ and tangent at $ A $ is $ \alpha $ , then $ \alpha $ is equal to
a. $ {\tan ^{ - 1}}e $
b. $ \dfrac{\pi }{2} $
c. $ {\tan ^{ - 1}}\left( {1 - {e^2}} \right) $
d.None of these
Answer
573k+ views
Hint: The point $ P $ is equal to $ \left( {\dfrac{a}{e},Y} \right) $ , since the point $ y $ meets in ellipse so $ y $ is equal to the point $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ . Then substitute $ y $ in the equation of ellipse to find the tangent at $ A $ . Then we will determine slope in $ PS $ . Product of the lope $ PS $ and $ A $ is equal to $ - 1 $ which will help to determine the value of $ \alpha $ .
Complete step-by-step answer:
The following is the schematic diagram of the ellipse in which $ S $ is the corresponding focus and $ C $ is the centre of the ellipse.
From the above diagram we observe that the point $ A $ is $ \left( {a\cos \theta ,b\sin \theta } \right) $ which is $ \left( {{x_1},{y_1}} \right) $ . The point $ S $ is in the $ S\left( {ae,0} \right) $ and the point $ C $ is $ \left( {0,0} \right) $ .
Equation of ellipse is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Now, let the point $ P $ is in the outer part of ellipse,
$ P\left( {\dfrac{a}{e},Y'} \right) = \left( {\dfrac{a}{e},Y} \right) $
Since we know that the point $ y $ meets at ellipse at $ A $ that is at $ \left( {{x_1},{y_1}} \right) $ we get,
$ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $
Now, we know that the equation of ellipse is,
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
Since $ y $ lies in the ellipse so the equation changes to,
$ \begin{array}{c}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\\
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{\dfrac{{{x^2}{Y^2}}}{{{a^2}{e^2}}}}}{{{b^2}}} = 1
\end{array} $
On further solving the above expression, we get the value as,
$ \dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{\left( {{a^2} - {b^2}} \right)}}{{{b^2}}} = 1 $
Since, the eccentricity $ e $ is equal to $ \sqrt {{a^2} - {b^2}} $ . So, let us substitute the value we obtain,
$ \begin{array}{l}
\dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{{e^2}}}{{1 - {e^2}}} = 1\\
{x^2}\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) = 1\\
\end{array} $
The take term $ \left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) $ to the right side and then take the square root both sides then we get,
$ \begin{array}{l}
{x^2} = \dfrac{1}{{\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)}}\\
x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }}
\end{array} $
This implies that $ x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }} $ .
Now, we have to find the slope of the tangent at the point $ A $ is equal to $ - \dfrac{{{b^2}}}{{{a^2}}}\dfrac{{{x_1}}}{{{y_1}}} $ .
Since, we know that $ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ , let us substitute in the above equation, so we get,
$ \begin{array}{c}
{T_{\rm{A}}} = - \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\dfrac{a}{e}}}{Y}\\
= - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}
\end{array} $
Also, slope of $ PS $ is equal to,
$ \dfrac{Y}{{\dfrac{{a{e^2}}}{{1 - {e^2}}}}} = \dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}} $
Now, we will calculate the product of slope of $ PS $ and $ {T_A} $ which is given as,
$ \begin{array}{l}
= \left[ { - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}} \right] \times \left[ {\dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}}} \right]\\
= - 1
\end{array} $
Then, we can say that $ \alpha = \dfrac{\pi }{2} $ because PS is perpendicular to the tangent.
Hence, the correct option is $ \dfrac{\pi }{2} $ .
So, the correct answer is “Option b”.
Note: Do not forget to take the $ y $ at the $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ and this can. also be done by different methods. Also, take $ A $ as $ \left( {a\cos \theta ,b\sin \theta } \right) $ and equation of $ AC $ is $ y = \dfrac{b}{a}x\tan \theta $ where, $ \tan \theta $ is the slope.
Complete step-by-step answer:
The following is the schematic diagram of the ellipse in which $ S $ is the corresponding focus and $ C $ is the centre of the ellipse.
From the above diagram we observe that the point $ A $ is $ \left( {a\cos \theta ,b\sin \theta } \right) $ which is $ \left( {{x_1},{y_1}} \right) $ . The point $ S $ is in the $ S\left( {ae,0} \right) $ and the point $ C $ is $ \left( {0,0} \right) $ .
Equation of ellipse is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Now, let the point $ P $ is in the outer part of ellipse,
$ P\left( {\dfrac{a}{e},Y'} \right) = \left( {\dfrac{a}{e},Y} \right) $
Since we know that the point $ y $ meets at ellipse at $ A $ that is at $ \left( {{x_1},{y_1}} \right) $ we get,
$ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $
Now, we know that the equation of ellipse is,
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
Since $ y $ lies in the ellipse so the equation changes to,
$ \begin{array}{c}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\\
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{\dfrac{{{x^2}{Y^2}}}{{{a^2}{e^2}}}}}{{{b^2}}} = 1
\end{array} $
On further solving the above expression, we get the value as,
$ \dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{\left( {{a^2} - {b^2}} \right)}}{{{b^2}}} = 1 $
Since, the eccentricity $ e $ is equal to $ \sqrt {{a^2} - {b^2}} $ . So, let us substitute the value we obtain,
$ \begin{array}{l}
\dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{{e^2}}}{{1 - {e^2}}} = 1\\
{x^2}\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) = 1\\
\end{array} $
The take term $ \left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) $ to the right side and then take the square root both sides then we get,
$ \begin{array}{l}
{x^2} = \dfrac{1}{{\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)}}\\
x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }}
\end{array} $
This implies that $ x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }} $ .
Now, we have to find the slope of the tangent at the point $ A $ is equal to $ - \dfrac{{{b^2}}}{{{a^2}}}\dfrac{{{x_1}}}{{{y_1}}} $ .
Since, we know that $ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ , let us substitute in the above equation, so we get,
$ \begin{array}{c}
{T_{\rm{A}}} = - \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\dfrac{a}{e}}}{Y}\\
= - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}
\end{array} $
Also, slope of $ PS $ is equal to,
$ \dfrac{Y}{{\dfrac{{a{e^2}}}{{1 - {e^2}}}}} = \dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}} $
Now, we will calculate the product of slope of $ PS $ and $ {T_A} $ which is given as,
$ \begin{array}{l}
= \left[ { - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}} \right] \times \left[ {\dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}}} \right]\\
= - 1
\end{array} $
Then, we can say that $ \alpha = \dfrac{\pi }{2} $ because PS is perpendicular to the tangent.
Hence, the correct option is $ \dfrac{\pi }{2} $ .
So, the correct answer is “Option b”.
Note: Do not forget to take the $ y $ at the $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ and this can. also be done by different methods. Also, take $ A $ as $ \left( {a\cos \theta ,b\sin \theta } \right) $ and equation of $ AC $ is $ y = \dfrac{b}{a}x\tan \theta $ where, $ \tan \theta $ is the slope.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

