
Let $ P $ be any point on a directrix of an ellipse of eccentricity $ e $ . $ S $ be the corresponding focus and $ C $ the centre of the ellipse. The line $ PC $ meets the ellipse at $ A $ . The angle between $ PS $ and tangent at $ A $ is $ \alpha $ , then $ \alpha $ is equal to
a. $ {\tan ^{ - 1}}e $
b. $ \dfrac{\pi }{2} $
c. $ {\tan ^{ - 1}}\left( {1 - {e^2}} \right) $
d.None of these
Answer
573.3k+ views
Hint: The point $ P $ is equal to $ \left( {\dfrac{a}{e},Y} \right) $ , since the point $ y $ meets in ellipse so $ y $ is equal to the point $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ . Then substitute $ y $ in the equation of ellipse to find the tangent at $ A $ . Then we will determine slope in $ PS $ . Product of the lope $ PS $ and $ A $ is equal to $ - 1 $ which will help to determine the value of $ \alpha $ .
Complete step-by-step answer:
The following is the schematic diagram of the ellipse in which $ S $ is the corresponding focus and $ C $ is the centre of the ellipse.
From the above diagram we observe that the point $ A $ is $ \left( {a\cos \theta ,b\sin \theta } \right) $ which is $ \left( {{x_1},{y_1}} \right) $ . The point $ S $ is in the $ S\left( {ae,0} \right) $ and the point $ C $ is $ \left( {0,0} \right) $ .
Equation of ellipse is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Now, let the point $ P $ is in the outer part of ellipse,
$ P\left( {\dfrac{a}{e},Y'} \right) = \left( {\dfrac{a}{e},Y} \right) $
Since we know that the point $ y $ meets at ellipse at $ A $ that is at $ \left( {{x_1},{y_1}} \right) $ we get,
$ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $
Now, we know that the equation of ellipse is,
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
Since $ y $ lies in the ellipse so the equation changes to,
$ \begin{array}{c}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\\
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{\dfrac{{{x^2}{Y^2}}}{{{a^2}{e^2}}}}}{{{b^2}}} = 1
\end{array} $
On further solving the above expression, we get the value as,
$ \dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{\left( {{a^2} - {b^2}} \right)}}{{{b^2}}} = 1 $
Since, the eccentricity $ e $ is equal to $ \sqrt {{a^2} - {b^2}} $ . So, let us substitute the value we obtain,
$ \begin{array}{l}
\dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{{e^2}}}{{1 - {e^2}}} = 1\\
{x^2}\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) = 1\\
\end{array} $
The take term $ \left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) $ to the right side and then take the square root both sides then we get,
$ \begin{array}{l}
{x^2} = \dfrac{1}{{\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)}}\\
x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }}
\end{array} $
This implies that $ x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }} $ .
Now, we have to find the slope of the tangent at the point $ A $ is equal to $ - \dfrac{{{b^2}}}{{{a^2}}}\dfrac{{{x_1}}}{{{y_1}}} $ .
Since, we know that $ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ , let us substitute in the above equation, so we get,
$ \begin{array}{c}
{T_{\rm{A}}} = - \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\dfrac{a}{e}}}{Y}\\
= - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}
\end{array} $
Also, slope of $ PS $ is equal to,
$ \dfrac{Y}{{\dfrac{{a{e^2}}}{{1 - {e^2}}}}} = \dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}} $
Now, we will calculate the product of slope of $ PS $ and $ {T_A} $ which is given as,
$ \begin{array}{l}
= \left[ { - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}} \right] \times \left[ {\dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}}} \right]\\
= - 1
\end{array} $
Then, we can say that $ \alpha = \dfrac{\pi }{2} $ because PS is perpendicular to the tangent.
Hence, the correct option is $ \dfrac{\pi }{2} $ .
So, the correct answer is “Option b”.
Note: Do not forget to take the $ y $ at the $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ and this can. also be done by different methods. Also, take $ A $ as $ \left( {a\cos \theta ,b\sin \theta } \right) $ and equation of $ AC $ is $ y = \dfrac{b}{a}x\tan \theta $ where, $ \tan \theta $ is the slope.
Complete step-by-step answer:
The following is the schematic diagram of the ellipse in which $ S $ is the corresponding focus and $ C $ is the centre of the ellipse.
From the above diagram we observe that the point $ A $ is $ \left( {a\cos \theta ,b\sin \theta } \right) $ which is $ \left( {{x_1},{y_1}} \right) $ . The point $ S $ is in the $ S\left( {ae,0} \right) $ and the point $ C $ is $ \left( {0,0} \right) $ .
Equation of ellipse is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Now, let the point $ P $ is in the outer part of ellipse,
$ P\left( {\dfrac{a}{e},Y'} \right) = \left( {\dfrac{a}{e},Y} \right) $
Since we know that the point $ y $ meets at ellipse at $ A $ that is at $ \left( {{x_1},{y_1}} \right) $ we get,
$ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $
Now, we know that the equation of ellipse is,
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
Since $ y $ lies in the ellipse so the equation changes to,
$ \begin{array}{c}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\\
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{\dfrac{{{x^2}{Y^2}}}{{{a^2}{e^2}}}}}{{{b^2}}} = 1
\end{array} $
On further solving the above expression, we get the value as,
$ \dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{\left( {{a^2} - {b^2}} \right)}}{{{b^2}}} = 1 $
Since, the eccentricity $ e $ is equal to $ \sqrt {{a^2} - {b^2}} $ . So, let us substitute the value we obtain,
$ \begin{array}{l}
\dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{{e^2}}}{{1 - {e^2}}} = 1\\
{x^2}\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) = 1\\
\end{array} $
The take term $ \left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) $ to the right side and then take the square root both sides then we get,
$ \begin{array}{l}
{x^2} = \dfrac{1}{{\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)}}\\
x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }}
\end{array} $
This implies that $ x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }} $ .
Now, we have to find the slope of the tangent at the point $ A $ is equal to $ - \dfrac{{{b^2}}}{{{a^2}}}\dfrac{{{x_1}}}{{{y_1}}} $ .
Since, we know that $ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ , let us substitute in the above equation, so we get,
$ \begin{array}{c}
{T_{\rm{A}}} = - \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\dfrac{a}{e}}}{Y}\\
= - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}
\end{array} $
Also, slope of $ PS $ is equal to,
$ \dfrac{Y}{{\dfrac{{a{e^2}}}{{1 - {e^2}}}}} = \dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}} $
Now, we will calculate the product of slope of $ PS $ and $ {T_A} $ which is given as,
$ \begin{array}{l}
= \left[ { - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}} \right] \times \left[ {\dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}}} \right]\\
= - 1
\end{array} $
Then, we can say that $ \alpha = \dfrac{\pi }{2} $ because PS is perpendicular to the tangent.
Hence, the correct option is $ \dfrac{\pi }{2} $ .
So, the correct answer is “Option b”.
Note: Do not forget to take the $ y $ at the $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ and this can. also be done by different methods. Also, take $ A $ as $ \left( {a\cos \theta ,b\sin \theta } \right) $ and equation of $ AC $ is $ y = \dfrac{b}{a}x\tan \theta $ where, $ \tan \theta $ is the slope.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

