
Let $ P $ be any point on a directrix of an ellipse of eccentricity $ e $ . $ S $ be the corresponding focus and $ C $ the centre of the ellipse. The line $ PC $ meets the ellipse at $ A $ . The angle between $ PS $ and tangent at $ A $ is $ \alpha $ , then $ \alpha $ is equal to
a. $ {\tan ^{ - 1}}e $
b. $ \dfrac{\pi }{2} $
c. $ {\tan ^{ - 1}}\left( {1 - {e^2}} \right) $
d.None of these
Answer
509.4k+ views
Hint: The point $ P $ is equal to $ \left( {\dfrac{a}{e},Y} \right) $ , since the point $ y $ meets in ellipse so $ y $ is equal to the point $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ . Then substitute $ y $ in the equation of ellipse to find the tangent at $ A $ . Then we will determine slope in $ PS $ . Product of the lope $ PS $ and $ A $ is equal to $ - 1 $ which will help to determine the value of $ \alpha $ .
Complete step-by-step answer:
The following is the schematic diagram of the ellipse in which $ S $ is the corresponding focus and $ C $ is the centre of the ellipse.
From the above diagram we observe that the point $ A $ is $ \left( {a\cos \theta ,b\sin \theta } \right) $ which is $ \left( {{x_1},{y_1}} \right) $ . The point $ S $ is in the $ S\left( {ae,0} \right) $ and the point $ C $ is $ \left( {0,0} \right) $ .
Equation of ellipse is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Now, let the point $ P $ is in the outer part of ellipse,
$ P\left( {\dfrac{a}{e},Y'} \right) = \left( {\dfrac{a}{e},Y} \right) $
Since we know that the point $ y $ meets at ellipse at $ A $ that is at $ \left( {{x_1},{y_1}} \right) $ we get,
$ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $
Now, we know that the equation of ellipse is,
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
Since $ y $ lies in the ellipse so the equation changes to,
$ \begin{array}{c}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\\
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{\dfrac{{{x^2}{Y^2}}}{{{a^2}{e^2}}}}}{{{b^2}}} = 1
\end{array} $
On further solving the above expression, we get the value as,
$ \dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{\left( {{a^2} - {b^2}} \right)}}{{{b^2}}} = 1 $
Since, the eccentricity $ e $ is equal to $ \sqrt {{a^2} - {b^2}} $ . So, let us substitute the value we obtain,
$ \begin{array}{l}
\dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{{e^2}}}{{1 - {e^2}}} = 1\\
{x^2}\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) = 1\\
\end{array} $
The take term $ \left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) $ to the right side and then take the square root both sides then we get,
$ \begin{array}{l}
{x^2} = \dfrac{1}{{\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)}}\\
x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }}
\end{array} $
This implies that $ x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }} $ .
Now, we have to find the slope of the tangent at the point $ A $ is equal to $ - \dfrac{{{b^2}}}{{{a^2}}}\dfrac{{{x_1}}}{{{y_1}}} $ .
Since, we know that $ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ , let us substitute in the above equation, so we get,
$ \begin{array}{c}
{T_{\rm{A}}} = - \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\dfrac{a}{e}}}{Y}\\
= - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}
\end{array} $
Also, slope of $ PS $ is equal to,
$ \dfrac{Y}{{\dfrac{{a{e^2}}}{{1 - {e^2}}}}} = \dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}} $
Now, we will calculate the product of slope of $ PS $ and $ {T_A} $ which is given as,
$ \begin{array}{l}
= \left[ { - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}} \right] \times \left[ {\dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}}} \right]\\
= - 1
\end{array} $
Then, we can say that $ \alpha = \dfrac{\pi }{2} $ because PS is perpendicular to the tangent.
Hence, the correct option is $ \dfrac{\pi }{2} $ .
So, the correct answer is “Option b”.
Note: Do not forget to take the $ y $ at the $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ and this can. also be done by different methods. Also, take $ A $ as $ \left( {a\cos \theta ,b\sin \theta } \right) $ and equation of $ AC $ is $ y = \dfrac{b}{a}x\tan \theta $ where, $ \tan \theta $ is the slope.
Complete step-by-step answer:
The following is the schematic diagram of the ellipse in which $ S $ is the corresponding focus and $ C $ is the centre of the ellipse.

From the above diagram we observe that the point $ A $ is $ \left( {a\cos \theta ,b\sin \theta } \right) $ which is $ \left( {{x_1},{y_1}} \right) $ . The point $ S $ is in the $ S\left( {ae,0} \right) $ and the point $ C $ is $ \left( {0,0} \right) $ .
Equation of ellipse is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Now, let the point $ P $ is in the outer part of ellipse,
$ P\left( {\dfrac{a}{e},Y'} \right) = \left( {\dfrac{a}{e},Y} \right) $
Since we know that the point $ y $ meets at ellipse at $ A $ that is at $ \left( {{x_1},{y_1}} \right) $ we get,
$ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $
Now, we know that the equation of ellipse is,
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
Since $ y $ lies in the ellipse so the equation changes to,
$ \begin{array}{c}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\\
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{\dfrac{{{x^2}{Y^2}}}{{{a^2}{e^2}}}}}{{{b^2}}} = 1
\end{array} $
On further solving the above expression, we get the value as,
$ \dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{\left( {{a^2} - {b^2}} \right)}}{{{b^2}}} = 1 $
Since, the eccentricity $ e $ is equal to $ \sqrt {{a^2} - {b^2}} $ . So, let us substitute the value we obtain,
$ \begin{array}{l}
\dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{{e^2}}}{{1 - {e^2}}} = 1\\
{x^2}\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) = 1\\
\end{array} $
The take term $ \left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) $ to the right side and then take the square root both sides then we get,
$ \begin{array}{l}
{x^2} = \dfrac{1}{{\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)}}\\
x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }}
\end{array} $
This implies that $ x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }} $ .
Now, we have to find the slope of the tangent at the point $ A $ is equal to $ - \dfrac{{{b^2}}}{{{a^2}}}\dfrac{{{x_1}}}{{{y_1}}} $ .
Since, we know that $ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ , let us substitute in the above equation, so we get,
$ \begin{array}{c}
{T_{\rm{A}}} = - \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\dfrac{a}{e}}}{Y}\\
= - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}
\end{array} $
Also, slope of $ PS $ is equal to,
$ \dfrac{Y}{{\dfrac{{a{e^2}}}{{1 - {e^2}}}}} = \dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}} $
Now, we will calculate the product of slope of $ PS $ and $ {T_A} $ which is given as,
$ \begin{array}{l}
= \left[ { - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}} \right] \times \left[ {\dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}}} \right]\\
= - 1
\end{array} $
Then, we can say that $ \alpha = \dfrac{\pi }{2} $ because PS is perpendicular to the tangent.
Hence, the correct option is $ \dfrac{\pi }{2} $ .
So, the correct answer is “Option b”.
Note: Do not forget to take the $ y $ at the $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ and this can. also be done by different methods. Also, take $ A $ as $ \left( {a\cos \theta ,b\sin \theta } \right) $ and equation of $ AC $ is $ y = \dfrac{b}{a}x\tan \theta $ where, $ \tan \theta $ is the slope.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
