
Let p and q be real numbers such that \[p \ne 0,{p^3} \ne q\] and ${P^3} \ne - q.$ If α and β are non-zero complex numbers satisfying \[{\alpha + \beta = - p}\] and \[{{\alpha }^{3}} + {{\beta }^{3}}{ = q}\] then a quadratic equation having \[\dfrac{\alpha }{\beta } and \dfrac{\beta }{\alpha }\] as its roots is
A. $\left( {{{\text{p}}^{\text{3}}}{\text{ + q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (}}{{\text{p}}^{\text{3}}}{\text{ + 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$
B. $\left( {{{\text{p}}^{\text{3}}}{\text{ + q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (}}{{\text{p}}^{\text{3}}}{\text{ - 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$
C. $\left( {{{\text{p}}^{\text{3}}}{\text{ - q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (5}}{{\text{p}}^{\text{3}}}{\text{ - 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ - q) = 0}}$
D. $\left( {{{\text{p}}^{\text{3}}}{\text{ - q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (5}}{{\text{p}}^{\text{3}}}{\text{ + 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$
Answer
563.1k+ views
Hint: To solve this question, we need to know the basic theory related to the quadratic equation. Here first we will assume that the new equation be ${x^2} + Bx + C = 0$and then after calculate the value of B and C. So that we will get a quadratic equation having \[\dfrac{\alpha }{\beta } and \dfrac{\beta }{\alpha }\] as its roots.
Complete step-by-step answer:
Let the new equation be
${x^2} + Bx + C = 0$
${\text{B = }}$\[ - \left( {\dfrac{\alpha }{\beta } + \dfrac{\beta }{\alpha }} \right)\]...........Sum of the roots =$ - \dfrac{b}{a}$
C=\[\dfrac{\alpha}{\beta} \cdot \dfrac{\beta }{\alpha }\]................Product of roots =$ - \dfrac{c}{a}$
$ \Rightarrow $\[{{\text{x}}^{\text{2}}}{\text{ - }}\left( {\dfrac{{\alpha }}{{\beta
}}{\text{ + }}\dfrac{{\beta }}{{\alpha }}} \right){\text{x + }}\dfrac{{\alpha
}}{{\beta }}{\times }\dfrac{{\beta }}{{\alpha }}{\text{ = 0}}\]
$ \Rightarrow $ ${{\text{x}}^{\text{2}}}{\text{ - }}\dfrac{{{\text{(}}{{\alpha}^{\text{2}}}{\text{ + }}{{\beta}^{\text{2}}}{\text{)}}}}{{{\alpha \beta}}}{\text{x + 1 = 0}}$
$ \Rightarrow $ ${{\text{x}}^{\text{2}}}{\text{ - }}\dfrac{{{{{\text{(}}{{\alpha}^{}}{\text{ + }}{{\beta}^{}}{\text{)}}}^2} - 2{\alpha \beta}}}{{{\alpha \beta}}}{\text{x + 1 = 0}}$
Now, we have ${\alpha ^3} + {\beta ^3} = q$
$ \Rightarrow $ ${{\text{(}}{{\alpha}^{}}{\text{ + }}{{\beta}^{}}{\text{)}}^3}$-3${\alpha \beta}$${(\alpha + \beta) = q}$
$ \Rightarrow $ ${\text{ - }}{{\text{p}}^{\text{3}}}{ + 3p\alpha \beta = q}$
$ \Rightarrow $ ${\alpha \beta = }\dfrac{{{\text{q + }}{{\text{p}}^{\text{3}}}}}{{{\text{3p}}}}$
$ \Rightarrow $ ${{\text{x}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{p}}^{\text{2}}}{\text{ - 2}}\left( {\dfrac{{{{\text{p}}^{\text{3}}}{\text{ + q}}}}{{{\text{3p}}}}} \right)}}{{\dfrac{{{{\text{p}}^{\text{3}}}{\text{ + q}}}}{{{\text{3p}}}}}}{\text{x + 1 = 0}}$
$ \Rightarrow $ p$\left( {{{\text{p}}^{\text{3}}}{\text{ + q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (3}}{{\text{p}}^{\text{3}}}{\text{ - 2}}{{\text{p}}^{\text{3}}}{\text{ - 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$
$ \Rightarrow $ $\left( {{{\text{p}}^{\text{3}}}{\text{ + q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (}}{{\text{p}}^{\text{3}}}{\text{ - 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$
Therefore, a quadratic equation having \[\dfrac{\alpha }{\beta }and\dfrac{\beta }{\alpha }\] as its roots is $\left( {{{\text{p}}^{\text{3}}}{\text{ + q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (}}{{\text{p}}^{\text{3}}}{\text{ - 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$.
Thus, option (B) is the correct answer.
Note: Always remember that a quadratic polynomial, when equated to zero, becomes a quadratic equation. The values of x satisfying the equation are called the roots of the quadratic equation. And also, A quadratic equation becomes an identity (a, b, c = 0) if the equation is satisfied by more than two numbers i.e. having more than two roots or solutions either real or complex.
Complete step-by-step answer:
Let the new equation be
${x^2} + Bx + C = 0$
${\text{B = }}$\[ - \left( {\dfrac{\alpha }{\beta } + \dfrac{\beta }{\alpha }} \right)\]...........Sum of the roots =$ - \dfrac{b}{a}$
C=\[\dfrac{\alpha}{\beta} \cdot \dfrac{\beta }{\alpha }\]................Product of roots =$ - \dfrac{c}{a}$
$ \Rightarrow $\[{{\text{x}}^{\text{2}}}{\text{ - }}\left( {\dfrac{{\alpha }}{{\beta
}}{\text{ + }}\dfrac{{\beta }}{{\alpha }}} \right){\text{x + }}\dfrac{{\alpha
}}{{\beta }}{\times }\dfrac{{\beta }}{{\alpha }}{\text{ = 0}}\]
$ \Rightarrow $ ${{\text{x}}^{\text{2}}}{\text{ - }}\dfrac{{{\text{(}}{{\alpha}^{\text{2}}}{\text{ + }}{{\beta}^{\text{2}}}{\text{)}}}}{{{\alpha \beta}}}{\text{x + 1 = 0}}$
$ \Rightarrow $ ${{\text{x}}^{\text{2}}}{\text{ - }}\dfrac{{{{{\text{(}}{{\alpha}^{}}{\text{ + }}{{\beta}^{}}{\text{)}}}^2} - 2{\alpha \beta}}}{{{\alpha \beta}}}{\text{x + 1 = 0}}$
Now, we have ${\alpha ^3} + {\beta ^3} = q$
$ \Rightarrow $ ${{\text{(}}{{\alpha}^{}}{\text{ + }}{{\beta}^{}}{\text{)}}^3}$-3${\alpha \beta}$${(\alpha + \beta) = q}$
$ \Rightarrow $ ${\text{ - }}{{\text{p}}^{\text{3}}}{ + 3p\alpha \beta = q}$
$ \Rightarrow $ ${\alpha \beta = }\dfrac{{{\text{q + }}{{\text{p}}^{\text{3}}}}}{{{\text{3p}}}}$
$ \Rightarrow $ ${{\text{x}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{p}}^{\text{2}}}{\text{ - 2}}\left( {\dfrac{{{{\text{p}}^{\text{3}}}{\text{ + q}}}}{{{\text{3p}}}}} \right)}}{{\dfrac{{{{\text{p}}^{\text{3}}}{\text{ + q}}}}{{{\text{3p}}}}}}{\text{x + 1 = 0}}$
$ \Rightarrow $ p$\left( {{{\text{p}}^{\text{3}}}{\text{ + q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (3}}{{\text{p}}^{\text{3}}}{\text{ - 2}}{{\text{p}}^{\text{3}}}{\text{ - 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$
$ \Rightarrow $ $\left( {{{\text{p}}^{\text{3}}}{\text{ + q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (}}{{\text{p}}^{\text{3}}}{\text{ - 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$
Therefore, a quadratic equation having \[\dfrac{\alpha }{\beta }and\dfrac{\beta }{\alpha }\] as its roots is $\left( {{{\text{p}}^{\text{3}}}{\text{ + q}}} \right){{\text{x}}^{\text{2}}}{\text{ - (}}{{\text{p}}^{\text{3}}}{\text{ - 2q)x + (}}{{\text{p}}^{\text{3}}}{\text{ + q) = 0}}$.
Thus, option (B) is the correct answer.
Note: Always remember that a quadratic polynomial, when equated to zero, becomes a quadratic equation. The values of x satisfying the equation are called the roots of the quadratic equation. And also, A quadratic equation becomes an identity (a, b, c = 0) if the equation is satisfied by more than two numbers i.e. having more than two roots or solutions either real or complex.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

