
Let $\overset{\to }{\mathop{a}}\,=2\hat{i}-\hat{j}+\hat{k};\overset{\to }{\mathop{b}}\,=\hat{i}+2\hat{j}-\hat{k}$and $\overset{\to }{\mathop{c}}\,=\hat{i}+\hat{j}-2\hat{k}$ be three vectors. A vector in the plane of b and c whose projection on a is of magnitude $\sqrt{\dfrac{2}{3}}$ is
a)$2\hat{i}+2\hat{j}-3\hat{k}$
b) $2\hat{i}+3\hat{j}+3\hat{k}$
c) $2\hat{i}-\hat{j}+5\hat{k}$
d) $2\hat{i}+\hat{j}+5\hat{k}$
Answer
586.8k+ views
Hint: We have three vectors given as: $\overset{\to }{\mathop{a}}\,=2\hat{i}-\hat{j}+\hat{k};\overset{\to }{\mathop{b}}\,=\hat{i}+2\hat{j}-\hat{k}$and $\overset{\to }{\mathop{c}}\,=\hat{i}+\hat{j}-2\hat{k}$. Let us assume that $\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{b}}\,+\lambda \overset{\to }{\mathop{c}}\,$ is the vector in the plane of b and c. Find the vector r and then find the projection of $\overset{\to }{\mathop{r}}\,$on $\overset{\to }{\mathop{a}}\,$ by using the projection formula as: $\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}$. We know that the projection of $\overset{\to }{\mathop{r}}\,$on $\overset{\to }{\mathop{a}}\,$ is $\sqrt{\dfrac{2}{3}}$. So, find the value of $\lambda $ using this relation and then find the required vector $\overset{\to }{\mathop{r}}\,$.
Complete step-by-step solution:
As we have assumed that: $\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{b}}\,+\lambda \overset{\to }{\mathop{c}}\,......(1)$
Now, put value of $\overset{\to }{\mathop{b}}\,=\hat{i}+2\hat{j}-\hat{k}$ and $\overset{\to }{\mathop{c}}\,=\hat{i}+\hat{j}-2\hat{k}$ in equation (1), we get:
$\begin{align}
& \overset{\to }{\mathop{r}}\,=\left( \hat{i}+2\hat{j}-\hat{k} \right)+\lambda \left( \hat{i}+\hat{j}-2\hat{k} \right) \\
& =\left( 1+\lambda \right)\hat{i}+\left( 2+\lambda \right)\hat{j}+\left( -1-2\lambda \right)\hat{k}......(2)
\end{align}$
Now, we need to find the projection of $\overset{\to }{\mathop{r}}\,$on $\overset{\to }{\mathop{a}}\,$ by using the formula: $\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}$
Firstly, find $\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,$, we get:
\[\begin{align}
& \overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,=\left\{ \left( 1+\lambda \right)\hat{i}+\left( 2+\lambda \right)\hat{j}+\left( -1-2\lambda \right)\hat{k} \right\}.\left\{ 2\hat{i}-\hat{j}+\hat{k} \right\} \\
& =2\left( 1+\lambda \right)-1\left( 2+\lambda \right)+1\left( -1-2\lambda \right) \\
& =2+2\lambda -2-\lambda -1-2\lambda \\
& =-1-\lambda ......(3)
\end{align}\]
Now, we need to find the magnitude of $\overset{\to }{\mathop{a}}\,$
We know that: \[\left| \overset{\to }{\mathop{a}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}\]
So, for $\overset{\to }{\mathop{a}}\,=2\hat{i}-\hat{j}+\hat{k}$ we get:
$\begin{align}
& \left| \overset{\to }{\mathop{a}}\, \right|=\sqrt{{{\left( 2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 1 \right)}^{2}}} \\
& =\sqrt{4+1+1} \\
& =\sqrt{6}......(4)
\end{align}$
Now, by using the projection formula: $\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}$, we get:
$\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}=\dfrac{\left( -1-\lambda \right)}{\sqrt{6}}......(5)$
We know that the projection of $\overset{\to }{\mathop{r}}\,$on $\overset{\to }{\mathop{a}}\,$ is $\sqrt{\dfrac{2}{3}}$.
So, we can wite equation (5):
$\begin{align}
& \dfrac{\left( -1-\lambda \right)}{\sqrt{6}}=\sqrt{\dfrac{2}{3}} \\
& \left( -1-\lambda \right)=\pm 2 \\
& -\lambda =3,-1 \\
& \lambda =-3,1 \\
\end{align}$
Now, put the value of $\lambda $in equation (2), we get:
For $\lambda =-3$
$\begin{align}
& \overset{\to }{\mathop{r}}\,=\left( 1-3 \right)\hat{i}+\left( 2-3 \right)\hat{j}+\left( -1+6 \right)\hat{k} \\
& =-2\hat{i}-\hat{j}+5\hat{k}
\end{align}$
For $\lambda =1$
$\begin{align}
& \overset{\to }{\mathop{r}}\,=\left( 1+1 \right)\hat{i}+\left( 2+1 \right)\hat{j}+\left( -1-2 \right)\hat{k} \\
& =2\hat{i}+3\hat{j}-3\hat{k}
\end{align}$
Hence, option (a) is the correct answer.
Note: The vector projection is of two types: Scalar projection that tells about the magnitude of the vector projection and the other is the Vector projection which says about itself and represents the unit vector.
If the vector $\overset{\to }{\mathop{a}}\,$ is projected on vector $\overset{\to }{\mathop{b}}\,$ then Vector Projection formula is given below:
$pro{{j}_{b}}a=\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}}\overset{\to }{\mathop{b}}\,$
The Scalar projection formula defines the length of given vector projection and is given below:
$pro{{j}_{b}}a=\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{\overset{\to }{\mathop{a}}\,}$
Complete step-by-step solution:
As we have assumed that: $\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{b}}\,+\lambda \overset{\to }{\mathop{c}}\,......(1)$
Now, put value of $\overset{\to }{\mathop{b}}\,=\hat{i}+2\hat{j}-\hat{k}$ and $\overset{\to }{\mathop{c}}\,=\hat{i}+\hat{j}-2\hat{k}$ in equation (1), we get:
$\begin{align}
& \overset{\to }{\mathop{r}}\,=\left( \hat{i}+2\hat{j}-\hat{k} \right)+\lambda \left( \hat{i}+\hat{j}-2\hat{k} \right) \\
& =\left( 1+\lambda \right)\hat{i}+\left( 2+\lambda \right)\hat{j}+\left( -1-2\lambda \right)\hat{k}......(2)
\end{align}$
Now, we need to find the projection of $\overset{\to }{\mathop{r}}\,$on $\overset{\to }{\mathop{a}}\,$ by using the formula: $\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}$
Firstly, find $\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,$, we get:
\[\begin{align}
& \overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,=\left\{ \left( 1+\lambda \right)\hat{i}+\left( 2+\lambda \right)\hat{j}+\left( -1-2\lambda \right)\hat{k} \right\}.\left\{ 2\hat{i}-\hat{j}+\hat{k} \right\} \\
& =2\left( 1+\lambda \right)-1\left( 2+\lambda \right)+1\left( -1-2\lambda \right) \\
& =2+2\lambda -2-\lambda -1-2\lambda \\
& =-1-\lambda ......(3)
\end{align}\]
Now, we need to find the magnitude of $\overset{\to }{\mathop{a}}\,$
We know that: \[\left| \overset{\to }{\mathop{a}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}\]
So, for $\overset{\to }{\mathop{a}}\,=2\hat{i}-\hat{j}+\hat{k}$ we get:
$\begin{align}
& \left| \overset{\to }{\mathop{a}}\, \right|=\sqrt{{{\left( 2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 1 \right)}^{2}}} \\
& =\sqrt{4+1+1} \\
& =\sqrt{6}......(4)
\end{align}$
Now, by using the projection formula: $\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}$, we get:
$\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}=\dfrac{\left( -1-\lambda \right)}{\sqrt{6}}......(5)$
We know that the projection of $\overset{\to }{\mathop{r}}\,$on $\overset{\to }{\mathop{a}}\,$ is $\sqrt{\dfrac{2}{3}}$.
So, we can wite equation (5):
$\begin{align}
& \dfrac{\left( -1-\lambda \right)}{\sqrt{6}}=\sqrt{\dfrac{2}{3}} \\
& \left( -1-\lambda \right)=\pm 2 \\
& -\lambda =3,-1 \\
& \lambda =-3,1 \\
\end{align}$
Now, put the value of $\lambda $in equation (2), we get:
For $\lambda =-3$
$\begin{align}
& \overset{\to }{\mathop{r}}\,=\left( 1-3 \right)\hat{i}+\left( 2-3 \right)\hat{j}+\left( -1+6 \right)\hat{k} \\
& =-2\hat{i}-\hat{j}+5\hat{k}
\end{align}$
For $\lambda =1$
$\begin{align}
& \overset{\to }{\mathop{r}}\,=\left( 1+1 \right)\hat{i}+\left( 2+1 \right)\hat{j}+\left( -1-2 \right)\hat{k} \\
& =2\hat{i}+3\hat{j}-3\hat{k}
\end{align}$
Hence, option (a) is the correct answer.
Note: The vector projection is of two types: Scalar projection that tells about the magnitude of the vector projection and the other is the Vector projection which says about itself and represents the unit vector.
If the vector $\overset{\to }{\mathop{a}}\,$ is projected on vector $\overset{\to }{\mathop{b}}\,$ then Vector Projection formula is given below:
$pro{{j}_{b}}a=\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}}\overset{\to }{\mathop{b}}\,$
The Scalar projection formula defines the length of given vector projection and is given below:
$pro{{j}_{b}}a=\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{\overset{\to }{\mathop{a}}\,}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

