
Let \[\overrightarrow{a}\] and \[\overrightarrow{b}\] be two unit vector such that\[\overrightarrow{a}.\overrightarrow{b}=0\]. For some\[x,y\in R\], let \[c=x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})\]. If \[|c|=2\] and the vector c is inclined at some angle \[\alpha \] to both a and b then the value of \[8{{\cos }^{2}}\alpha \] is …. .
Answer
590.7k+ views
Hint: We are given magnitude of a and b as 1 because they are unit vectors and there angle with \[c=x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})\] is \[\alpha \] , so we will first calculate dot product of a and b with c, then we will square the c vector because we know the magnitude of c vector also , then after solving we will get the results .
Complete step-by-step answer:
We are given \[\overrightarrow{a}\] and \[\overrightarrow{b}\] be two unit vector such that \[\overrightarrow{a}.\overrightarrow{b}=0\], it means magnitude of vector a and b is 1 and angle between them is 90, also given a vector \[c=x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})\] and \[|c|=2\]
vector c is inclined at some angle \[\alpha \] to both a and b, for this let’s take dot product of c and a
then c and b
\[\overrightarrow{c}.\overrightarrow{a}=(x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})).\overrightarrow{a}\] , solving LHS and RHS differently and applying formula \[\overrightarrow{a}.\overrightarrow{b}=|a||b|cos\alpha \], we get
\[\overrightarrow{c}.\overrightarrow{a}=|c||a|cos\alpha \], now on putting \[|\overrightarrow{c}|=2\],\[|\overrightarrow{a}|=1\] and \[\alpha \] angle between them
Which on solving both side we get \[2\times 1\times \cos \alpha =x\]
Similarly applying this for c and b we get \[2\times 1\times \cos \alpha =y\]
Now on putting values of x and y in vector c we get equation like \[c=2\cos \alpha \overrightarrow{a}+2\cos \alpha \overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})\]
Further solving gives \[c=2\cos \alpha (\overrightarrow{a}+\overrightarrow{b})+(\overrightarrow{a}\times \overrightarrow{b})\]
Now on squaring both side equation will look like, applying formula \[{{(\overrightarrow{a}+\overrightarrow{b})}^{2}}=|\overrightarrow{a}{{|}^{2}}+|\overrightarrow{b}{{|}^{2}}+2\overrightarrow{a}.\overrightarrow{b}\]\[|c{{|}^{2}}=4{{\cos }^{2}}\alpha {{(\overrightarrow{a}+\overrightarrow{b})}^{2}}+{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}+2\cos \alpha (\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})\]
Now here we know that \[|\overrightarrow{c}|=2\],\[{{(\overrightarrow{a}+\overrightarrow{b})}^{2}}=1+1=2\] , \[{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}=1\times 1\times \sin 90=1\] and \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})=0\] because a and b are perpendicular
So, on putting values of these in equation \[|c{{|}^{2}}=4{{\cos }^{2}}\alpha {{(\overrightarrow{a}+\overrightarrow{b})}^{2}}+{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}+2\cos \alpha (\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})\]
We get \[4=8{{\cos }^{2}}\alpha +1\], which on solving gives
\[3=8{{\cos }^{2}}\alpha \], hence answer is 3
Note: Some of the students might have a doubt that how can we write this \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})=0\]
It is because cross product of two vectors is always perpendicular those vectors so on taking dot product with the corresponding vectors it results into 0
Complete step-by-step answer:
We are given \[\overrightarrow{a}\] and \[\overrightarrow{b}\] be two unit vector such that \[\overrightarrow{a}.\overrightarrow{b}=0\], it means magnitude of vector a and b is 1 and angle between them is 90, also given a vector \[c=x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})\] and \[|c|=2\]
vector c is inclined at some angle \[\alpha \] to both a and b, for this let’s take dot product of c and a
then c and b
\[\overrightarrow{c}.\overrightarrow{a}=(x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})).\overrightarrow{a}\] , solving LHS and RHS differently and applying formula \[\overrightarrow{a}.\overrightarrow{b}=|a||b|cos\alpha \], we get
\[\overrightarrow{c}.\overrightarrow{a}=|c||a|cos\alpha \], now on putting \[|\overrightarrow{c}|=2\],\[|\overrightarrow{a}|=1\] and \[\alpha \] angle between them
Which on solving both side we get \[2\times 1\times \cos \alpha =x\]
Similarly applying this for c and b we get \[2\times 1\times \cos \alpha =y\]
Now on putting values of x and y in vector c we get equation like \[c=2\cos \alpha \overrightarrow{a}+2\cos \alpha \overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})\]
Further solving gives \[c=2\cos \alpha (\overrightarrow{a}+\overrightarrow{b})+(\overrightarrow{a}\times \overrightarrow{b})\]
Now on squaring both side equation will look like, applying formula \[{{(\overrightarrow{a}+\overrightarrow{b})}^{2}}=|\overrightarrow{a}{{|}^{2}}+|\overrightarrow{b}{{|}^{2}}+2\overrightarrow{a}.\overrightarrow{b}\]\[|c{{|}^{2}}=4{{\cos }^{2}}\alpha {{(\overrightarrow{a}+\overrightarrow{b})}^{2}}+{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}+2\cos \alpha (\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})\]
Now here we know that \[|\overrightarrow{c}|=2\],\[{{(\overrightarrow{a}+\overrightarrow{b})}^{2}}=1+1=2\] , \[{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}=1\times 1\times \sin 90=1\] and \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})=0\] because a and b are perpendicular
So, on putting values of these in equation \[|c{{|}^{2}}=4{{\cos }^{2}}\alpha {{(\overrightarrow{a}+\overrightarrow{b})}^{2}}+{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}+2\cos \alpha (\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})\]
We get \[4=8{{\cos }^{2}}\alpha +1\], which on solving gives
\[3=8{{\cos }^{2}}\alpha \], hence answer is 3
Note: Some of the students might have a doubt that how can we write this \[(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})=0\]
It is because cross product of two vectors is always perpendicular those vectors so on taking dot product with the corresponding vectors it results into 0
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

