
Let $\overrightarrow a = \overrightarrow j - \overrightarrow k $ and $\overrightarrow c = \overrightarrow i - \overrightarrow j - \overrightarrow k $. Then vector $\overrightarrow b $ satisfying $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $and $\overrightarrow a .\overrightarrow b = 3$ is:
$
A)\,2\overrightarrow i - \overrightarrow j + 2\overrightarrow k \\
B)\,\overrightarrow i - \overrightarrow j - 2\overrightarrow k \\
C)\,\overrightarrow i + \overrightarrow j - 2\overrightarrow k \\
D)\, - \overrightarrow i + \overrightarrow j - 2\overrightarrow k \\
$
Answer
589.5k+ views
Hint:In order to solve this question, assume $\overrightarrow b $ to be a variable vector. Then use $\overrightarrow a .\overrightarrow b = 3$to get an equation among the variables. Next use $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $ and get the other equation. Solve the two equations and get your answer.
Complete step-by-step answer:
Let us assume that $\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k $
As given in the question, $\overrightarrow a = \overrightarrow j - \overrightarrow k $
Now, $\overrightarrow a .\overrightarrow b = 3$
We know that dot-product is the multiplication of vectors in the same direction.
Therefore,
\[
\Rightarrow \left( {\overrightarrow j - \overrightarrow k } \right).\left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) = 3 \\
\Rightarrow 0.x + 1.y - 1.z = 3 \\
\Rightarrow y - z = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (1) \\
\]
We have got one equation in \[y\,\&\,z\]. Now, we will use $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $ to obtain the second equation
Let us first find $(\overrightarrow a \times \overrightarrow b )$
We know that cross-product is the multiplication of vectors in different directions.
Therefore,
\[
(\overrightarrow a \times \overrightarrow b ) = \left( {\overrightarrow j - \overrightarrow k } \right) \times \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) \\
= \left( {\begin{array}{*{20}{c}}
{\overrightarrow i }&{\overrightarrow j }&{\overrightarrow k } \\
0&1&{ - 1} \\
x&y&z
\end{array}} \right) \\
= \overrightarrow i (z + y) - \overrightarrow j (0 + x) + \overrightarrow k (0 - x) \\
= \overrightarrow i (z + y) - \overrightarrow j (x) - \overrightarrow k (x) \\
\]
As given in the question , $\overrightarrow c = \overrightarrow i - \overrightarrow j - \overrightarrow k $
Therefore, using the formula $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $ we get write the above equations as
\[
\Rightarrow \overrightarrow i (z + y) - \overrightarrow j (x) - \overrightarrow k (x) + \overrightarrow i - \overrightarrow j - \overrightarrow k = 0\overrightarrow i + 0\overrightarrow j + 0\overrightarrow k \\
\Rightarrow \overrightarrow i (z + y + 1) - \overrightarrow j (x + 1) - \overrightarrow k (x + 1) = 0\overrightarrow i + 0\overrightarrow j + 0\overrightarrow k \]
Comparing the coefficients from both sides
$
\Rightarrow y + z + 1 = 0\,\,,\,\,x + 1 = 0\,\,,\,\,x = -1 \\
\Rightarrow y + z = - 1 - - - - - - - - - - - - - (2)$
Adding equations (1) and (2) we get
$
2y = 2 \\
y = 1
$
Using this value of $y = 1$ and substituting in (2) we get,
$z = - 2$
Substituting value of $x$, $y$ and $z$ i.e $x= -1$ , $y= 1$ and $z= -2$ in $\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k $
We get ,$\overrightarrow b = - \overrightarrow i + \overrightarrow j - 2\overrightarrow k $
So, the correct answer is “Option D”.
Note:Another method to solve this question would be taking cross product of$\overrightarrow a $ on both sides of equation $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $which will make $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b ) + \overrightarrow a \times \overrightarrow c = \overrightarrow 0 $
Then use the formula for $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b )$ which is $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b ) = (\overrightarrow a .\overrightarrow b )\overrightarrow a - (\overrightarrow a .\overrightarrow a )\overrightarrow b $and then solve the question. This is a much shorter method but a bit complex so you need to practice it a lot before using it in questions.
Complete step-by-step answer:
Let us assume that $\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k $
As given in the question, $\overrightarrow a = \overrightarrow j - \overrightarrow k $
Now, $\overrightarrow a .\overrightarrow b = 3$
We know that dot-product is the multiplication of vectors in the same direction.
Therefore,
\[
\Rightarrow \left( {\overrightarrow j - \overrightarrow k } \right).\left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) = 3 \\
\Rightarrow 0.x + 1.y - 1.z = 3 \\
\Rightarrow y - z = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (1) \\
\]
We have got one equation in \[y\,\&\,z\]. Now, we will use $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $ to obtain the second equation
Let us first find $(\overrightarrow a \times \overrightarrow b )$
We know that cross-product is the multiplication of vectors in different directions.
Therefore,
\[
(\overrightarrow a \times \overrightarrow b ) = \left( {\overrightarrow j - \overrightarrow k } \right) \times \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) \\
= \left( {\begin{array}{*{20}{c}}
{\overrightarrow i }&{\overrightarrow j }&{\overrightarrow k } \\
0&1&{ - 1} \\
x&y&z
\end{array}} \right) \\
= \overrightarrow i (z + y) - \overrightarrow j (0 + x) + \overrightarrow k (0 - x) \\
= \overrightarrow i (z + y) - \overrightarrow j (x) - \overrightarrow k (x) \\
\]
As given in the question , $\overrightarrow c = \overrightarrow i - \overrightarrow j - \overrightarrow k $
Therefore, using the formula $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $ we get write the above equations as
\[
\Rightarrow \overrightarrow i (z + y) - \overrightarrow j (x) - \overrightarrow k (x) + \overrightarrow i - \overrightarrow j - \overrightarrow k = 0\overrightarrow i + 0\overrightarrow j + 0\overrightarrow k \\
\Rightarrow \overrightarrow i (z + y + 1) - \overrightarrow j (x + 1) - \overrightarrow k (x + 1) = 0\overrightarrow i + 0\overrightarrow j + 0\overrightarrow k \]
Comparing the coefficients from both sides
$
\Rightarrow y + z + 1 = 0\,\,,\,\,x + 1 = 0\,\,,\,\,x = -1 \\
\Rightarrow y + z = - 1 - - - - - - - - - - - - - (2)$
Adding equations (1) and (2) we get
$
2y = 2 \\
y = 1
$
Using this value of $y = 1$ and substituting in (2) we get,
$z = - 2$
Substituting value of $x$, $y$ and $z$ i.e $x= -1$ , $y= 1$ and $z= -2$ in $\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k $
We get ,$\overrightarrow b = - \overrightarrow i + \overrightarrow j - 2\overrightarrow k $
So, the correct answer is “Option D”.
Note:Another method to solve this question would be taking cross product of$\overrightarrow a $ on both sides of equation $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $which will make $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b ) + \overrightarrow a \times \overrightarrow c = \overrightarrow 0 $
Then use the formula for $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b )$ which is $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b ) = (\overrightarrow a .\overrightarrow b )\overrightarrow a - (\overrightarrow a .\overrightarrow a )\overrightarrow b $and then solve the question. This is a much shorter method but a bit complex so you need to practice it a lot before using it in questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

