
Let $\overline{a}={{\alpha }_{1}}\widehat{i}+{{\alpha }_{2}}\widehat{j}+{{\alpha }_{3}}\widehat{k},\overline{b}={{\beta }_{1}}\widehat{i}+{{\beta }_{2}}\widehat{j}+{{\beta }_{3}}\widehat{k}$ and $\overline{c}={{\gamma }_{1}}\widehat{i}+{{\gamma }_{2}}\widehat{j}+{{\gamma }_{3}}\widehat{k},\left| \overline{a} \right|=2\sqrt{2},\overline{a}$makes an angle $\dfrac{\pi }{3}$ with the plane of $\overline{b},\overline{c}$ and angle between $\overline{b},\overline{c}$ is$\dfrac{\pi }{6}$, then ${{\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$is equal to (n is even natural number)
A) ${{\left[ \dfrac{\left| \overline{b} \right|\left| \overline{a} \right|}{6} \right]}^{\dfrac{n}{2}}}$
B) ${{\left[ \dfrac{\sqrt{3}\left| \overline{b} \right|\left| \overline{c} \right|}{\sqrt{2}} \right]}^{n}}$
C) $\dfrac{\left| \overline{b} \right|{{\left| \overline{c} \right|}^{\dfrac{n}{2}}}}{\sqrt{3}{{2}^{n}}}$
D) ${{\left[ \dfrac{\sqrt{2}\left| \overline{b} \right|\left| \overline{a} \right|}{\sqrt{3}} \right]}^{n}}$
Answer
582k+ views
Hint: For solving this question we will simplify the given ${{\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$using the basic concept that $\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|=\left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]$and $\begin{align}
& \left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]=\left( \overline{a}\times \overline{b} \right)\cdot \overline{c} \\
& \Rightarrow \overline{a}\cdot \left( \overline{b}\times \overline{c} \right)
\end{align}$ and conclude to the answer.
Complete step by step answer:
Given in the question that $\overline{a}={{\alpha }_{1}}\widehat{i}+{{\alpha }_{2}}\widehat{j}+{{\alpha }_{3}}\widehat{k},\overline{b}={{\beta }_{1}}\widehat{i}+{{\beta }_{2}}\widehat{j}+{{\beta }_{3}}\widehat{k}$ and $\overline{c}={{\gamma }_{1}}\widehat{i}+{{\gamma }_{2}}\widehat{j}+{{\gamma }_{3}}\widehat{k},\left| \overline{a} \right|=2\sqrt{2},\overline{a}$makes an angle $\dfrac{\pi }{3}$ with the plane of $\overline{b},\overline{c}$ and angle between $\overline{b},\overline{c}$ is$\dfrac{\pi }{6}$ where $\overline{a},\overline{b},\overline{c}$ are 3 vectors.
${{\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$can be written as ${{\left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]}^{n}}$
As we know from the basic concept that $\begin{align}
& \left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]=\left( \overline{a}\times \overline{b} \right)\cdot \overline{c} \\
& \Rightarrow \overline{a}\cdot \left( \overline{b}\times \overline{c} \right)
\end{align}$
From the concept as we know that the normal of the plane containing $\overline{b},\overline{c}$ is $\overline{b}\times \overline{c}$.
From the question it is given that $\overline{a}$ makes an angle $\dfrac{\pi }{3}$ with the plane of $\overline{b},\overline{c}$
So $\overline{a}$will make an angle $\dfrac{\pi }{6}$ with the normal of the plane containing $\overline{b},\overline{c}$ that is $\overline{b}\times \overline{c}$.
As we know that $\overline{a}\cdot \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\cos \theta $where $\theta $is the angle between the normal of the plane containing of$\overline{b}$and $\overline{a}$.
We also know that $\overline{a}\times \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\sin \theta \left| \widehat{n} \right|$where $\theta $is the angle between$\overline{a},\overline{b}$ and $\left| \widehat{n} \right|$ is the magnitude of the unit vector along the normal which will be equal to 1.
Hence the simplified form of ${{\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$ will be
$\begin{align}
& \Rightarrow {{\left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]}^{n}} \\
& \Rightarrow {{\left( \overline{a}\cdot \left( \overline{b}\times \overline{c} \right) \right)}^{n}} \\
& \Rightarrow {{\left( \left| \overline{a} \right|.\left| \overline{b}\times \overline{c} \right|\cos \dfrac{\pi }{6} \right)}^{n}}
\end{align}$
Since, $\overline{a}$makes an angle $\dfrac{\pi }{6}$ with the normal of the plane containing $\overline{b},\overline{c}$ that is $\overline{b}\times \overline{c}$.
$\begin{align}
& {{\left( \left| \overline{a} \right|.\left| \overline{b}\times \overline{c} \right|\cos \dfrac{\pi }{6} \right)}^{n}} \\
& \Rightarrow {{\left( 2\sqrt{2}\left| \overline{b}\times \overline{c} \right|\dfrac{\sqrt{3}}{2} \right)}^{n}} \\
\end{align}$
Since,$\left| \overline{a} \right|=2\sqrt{2}$is given in the question and we know that $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$
This can be further simplified as
$\begin{align}
& {{\left( 2\sqrt{2}\left| \overline{b}\times \overline{c} \right|\dfrac{\sqrt{3}}{2} \right)}^{^{{}}}} \\
& \Rightarrow {{\left( \sqrt{6}\left| \overline{b}\times \overline{c} \right| \right)}^{n}} \\
& \Rightarrow {{\left( \sqrt{6}\left| \overline{b} \right|\left| \overline{c} \right|\sin \dfrac{\pi }{6}\left| \widehat{n} \right| \right)}^{n}} \\
\end{align}$
Since, we know that $\left| \widehat{n} \right|=1$and $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$
$\begin{align}
& {{\left( \sqrt{6}\left| \overline{b} \right|\left| \overline{c} \right|\sin \dfrac{\pi }{6}\left| \widehat{n} \right| \right)}^{n}} \\
& \Rightarrow {{\left( \sqrt{6}\left| \overline{b} \right|\left| \overline{c} \right|\dfrac{1}{2} \right)}^{n}} \\
& \Rightarrow {{\left( \dfrac{\sqrt{3}}{\sqrt{2}}\left| \overline{b} \right|\left| \overline{c} \right| \right)}^{n}} \\
\end{align}$
We can conclude that${{\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$= ${{\left[ \dfrac{\sqrt{3}\left| \overline{b} \right|\left| \overline{c} \right|}{\sqrt{2}} \right]}^{n}}$
Hence, option (B) is correct.
Note:
Here we should take care that $\overline{a}\cdot \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\cos \theta $where $\theta $is the angle between the normal of the plane containing of$\overline{b}$and $\overline{a}$ and $\overline{a}\times \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\sin \theta \left| \widehat{n} \right|$where $\theta $is the angle between$\overline{a},\overline{b}$ and $\left| \widehat{n} \right|$ is the magnitude of the unit vector along the normal which will be equal to 1 if we by mistake take the interchange $\cos \theta $with $\sin \theta $the entire result will be different and we will end up concluding a wrong answer.
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$using the basic concept that $\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|=\left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]$and $\begin{align}
& \left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]=\left( \overline{a}\times \overline{b} \right)\cdot \overline{c} \\
& \Rightarrow \overline{a}\cdot \left( \overline{b}\times \overline{c} \right)
\end{align}$ and conclude to the answer.
Complete step by step answer:
Given in the question that $\overline{a}={{\alpha }_{1}}\widehat{i}+{{\alpha }_{2}}\widehat{j}+{{\alpha }_{3}}\widehat{k},\overline{b}={{\beta }_{1}}\widehat{i}+{{\beta }_{2}}\widehat{j}+{{\beta }_{3}}\widehat{k}$ and $\overline{c}={{\gamma }_{1}}\widehat{i}+{{\gamma }_{2}}\widehat{j}+{{\gamma }_{3}}\widehat{k},\left| \overline{a} \right|=2\sqrt{2},\overline{a}$makes an angle $\dfrac{\pi }{3}$ with the plane of $\overline{b},\overline{c}$ and angle between $\overline{b},\overline{c}$ is$\dfrac{\pi }{6}$ where $\overline{a},\overline{b},\overline{c}$ are 3 vectors.
${{\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$can be written as ${{\left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]}^{n}}$
As we know from the basic concept that $\begin{align}
& \left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]=\left( \overline{a}\times \overline{b} \right)\cdot \overline{c} \\
& \Rightarrow \overline{a}\cdot \left( \overline{b}\times \overline{c} \right)
\end{align}$
From the concept as we know that the normal of the plane containing $\overline{b},\overline{c}$ is $\overline{b}\times \overline{c}$.
From the question it is given that $\overline{a}$ makes an angle $\dfrac{\pi }{3}$ with the plane of $\overline{b},\overline{c}$
So $\overline{a}$will make an angle $\dfrac{\pi }{6}$ with the normal of the plane containing $\overline{b},\overline{c}$ that is $\overline{b}\times \overline{c}$.
As we know that $\overline{a}\cdot \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\cos \theta $where $\theta $is the angle between the normal of the plane containing of$\overline{b}$and $\overline{a}$.
We also know that $\overline{a}\times \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\sin \theta \left| \widehat{n} \right|$where $\theta $is the angle between$\overline{a},\overline{b}$ and $\left| \widehat{n} \right|$ is the magnitude of the unit vector along the normal which will be equal to 1.
Hence the simplified form of ${{\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$ will be
$\begin{align}
& \Rightarrow {{\left[ \begin{matrix}
\overline{a} & \overline{b} & \overline{c} \\
\end{matrix} \right]}^{n}} \\
& \Rightarrow {{\left( \overline{a}\cdot \left( \overline{b}\times \overline{c} \right) \right)}^{n}} \\
& \Rightarrow {{\left( \left| \overline{a} \right|.\left| \overline{b}\times \overline{c} \right|\cos \dfrac{\pi }{6} \right)}^{n}}
\end{align}$
Since, $\overline{a}$makes an angle $\dfrac{\pi }{6}$ with the normal of the plane containing $\overline{b},\overline{c}$ that is $\overline{b}\times \overline{c}$.
$\begin{align}
& {{\left( \left| \overline{a} \right|.\left| \overline{b}\times \overline{c} \right|\cos \dfrac{\pi }{6} \right)}^{n}} \\
& \Rightarrow {{\left( 2\sqrt{2}\left| \overline{b}\times \overline{c} \right|\dfrac{\sqrt{3}}{2} \right)}^{n}} \\
\end{align}$
Since,$\left| \overline{a} \right|=2\sqrt{2}$is given in the question and we know that $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$
This can be further simplified as
$\begin{align}
& {{\left( 2\sqrt{2}\left| \overline{b}\times \overline{c} \right|\dfrac{\sqrt{3}}{2} \right)}^{^{{}}}} \\
& \Rightarrow {{\left( \sqrt{6}\left| \overline{b}\times \overline{c} \right| \right)}^{n}} \\
& \Rightarrow {{\left( \sqrt{6}\left| \overline{b} \right|\left| \overline{c} \right|\sin \dfrac{\pi }{6}\left| \widehat{n} \right| \right)}^{n}} \\
\end{align}$
Since, we know that $\left| \widehat{n} \right|=1$and $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$
$\begin{align}
& {{\left( \sqrt{6}\left| \overline{b} \right|\left| \overline{c} \right|\sin \dfrac{\pi }{6}\left| \widehat{n} \right| \right)}^{n}} \\
& \Rightarrow {{\left( \sqrt{6}\left| \overline{b} \right|\left| \overline{c} \right|\dfrac{1}{2} \right)}^{n}} \\
& \Rightarrow {{\left( \dfrac{\sqrt{3}}{\sqrt{2}}\left| \overline{b} \right|\left| \overline{c} \right| \right)}^{n}} \\
\end{align}$
We can conclude that${{\left| \begin{matrix}
{{\alpha }_{1}} & {{\alpha }_{2}} & {{\alpha }_{3}} \\
{{\beta }_{1}} & {{\beta }_{2}} & {{\beta }_{3}} \\
{{\gamma }_{1}} & {{\gamma }_{2}} & {{\gamma }_{3}} \\
\end{matrix} \right|}^{n}}$= ${{\left[ \dfrac{\sqrt{3}\left| \overline{b} \right|\left| \overline{c} \right|}{\sqrt{2}} \right]}^{n}}$
Hence, option (B) is correct.
Note:
Here we should take care that $\overline{a}\cdot \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\cos \theta $where $\theta $is the angle between the normal of the plane containing of$\overline{b}$and $\overline{a}$ and $\overline{a}\times \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\sin \theta \left| \widehat{n} \right|$where $\theta $is the angle between$\overline{a},\overline{b}$ and $\left| \widehat{n} \right|$ is the magnitude of the unit vector along the normal which will be equal to 1 if we by mistake take the interchange $\cos \theta $with $\sin \theta $the entire result will be different and we will end up concluding a wrong answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

