
Let $\omega $ be a solution of ${x^3} - 1 = 0$ with $\operatorname{Im} \left( \omega \right) > 0$. If $a = 2$ with b and c satisfying
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]......\left( E \right)\]
Then the value of $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$ is :
(A) $ - 2$
(B) $2$
(C) $3$
(D) $ - 3$
Answer
591.3k+ views
Hint: The multiplication of two matrices is possible if the no. of columns in matrix A is equal to the no. of rows in matrix B. Here we multiplied the two given matrix and form the equations by comparing the values of both sides.
Complete step-by-step answer:
Since, \[a,b\] and $c$ be three real numbers satisfies
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]\]
So, we get the equations
$
a + 8b + 7c = 0 \\
9a + 2b + 3c = 0 \\
7a + 7b + 7c = 0 \Rightarrow a + b + c = 0 \\
$
Since $a = 2$, so the equations become
$
2 + 8b + 7c = 0 \Rightarrow 8b + 7c = - 2....(1) \\
9\left( 2 \right) + 2b + 3c = 0 \Rightarrow 2b + 3c = - 18....(2) \\
2 + b + c = 0 \Rightarrow b + c = - 2....(3) \\
$
Multiply equation (3) by $7$ and subtract it from (1), we get
$8b + 7c - \left( {7b + 7c} \right) = - 2 - \left( { - 14} \right)$
$
\Rightarrow 8b + 7c - 7b - 7c = - 2 + 14 \\
\Rightarrow b = 12 \\
$
Substitute the value of $b$ in equation (3), we get
$
12 + c = - 2 \\
\Rightarrow c = - 2 - 12 \\
\Rightarrow c = - 14 \\
$
So, we have $a = 2,b = 12,c = - 14$
Now, $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$$ = \dfrac{3}{{{\omega ^2}}} + \dfrac{1}{{{\omega ^{12}}}} + \dfrac{3}{{{\omega ^{ - 14}}}}$
\[ = \dfrac{3}{{{\omega ^2}}} + \dfrac{1}{{{\omega ^{12}}}} + 3{\omega ^{14}}\]
Convert the power of $\omega $ in terms of ${\omega ^3}$, because ${\omega ^3} = 1$:-
\[ = \dfrac{{3\omega }}{{{\omega ^3}}} + \dfrac{1}{{{{\left( {{\omega ^3}} \right)}^4}}} + 3{\left( {{\omega ^3}} \right)^4} \cdot {\omega ^2}\]
Put ${\omega ^3} = 1$ and simplify the above,
\[ = \dfrac{{3\omega }}{1} + \dfrac{1}{{{{\left( 1 \right)}^4}}} + 3{\left( 1 \right)^4} \cdot {\omega ^2}\]
\[ = 3\omega + 1 + 3{\omega ^2}\]
$ = 3\left( {\omega + {\omega ^2}} \right) + 1$
Since $1 + \omega + {\omega ^2} = 0$$ \Rightarrow \omega + {\omega ^2} = - 1$
$ = 3\left( { - 1} \right) + 1$
$
= - 3 + 1 \\
= - 2 \\
$
So, $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$$ = - 2$
Hence, option (A) is the correct answer.
Note: Remember the formulae regarding $\omega $ i.e., ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$ to solve these types of problems. Also, it is important to reduce the high powers of $\omega $into small powers of $\omega $, as we have done in this question.
Complete step-by-step answer:
Since, \[a,b\] and $c$ be three real numbers satisfies
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]\]
So, we get the equations
$
a + 8b + 7c = 0 \\
9a + 2b + 3c = 0 \\
7a + 7b + 7c = 0 \Rightarrow a + b + c = 0 \\
$
Since $a = 2$, so the equations become
$
2 + 8b + 7c = 0 \Rightarrow 8b + 7c = - 2....(1) \\
9\left( 2 \right) + 2b + 3c = 0 \Rightarrow 2b + 3c = - 18....(2) \\
2 + b + c = 0 \Rightarrow b + c = - 2....(3) \\
$
Multiply equation (3) by $7$ and subtract it from (1), we get
$8b + 7c - \left( {7b + 7c} \right) = - 2 - \left( { - 14} \right)$
$
\Rightarrow 8b + 7c - 7b - 7c = - 2 + 14 \\
\Rightarrow b = 12 \\
$
Substitute the value of $b$ in equation (3), we get
$
12 + c = - 2 \\
\Rightarrow c = - 2 - 12 \\
\Rightarrow c = - 14 \\
$
So, we have $a = 2,b = 12,c = - 14$
Now, $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$$ = \dfrac{3}{{{\omega ^2}}} + \dfrac{1}{{{\omega ^{12}}}} + \dfrac{3}{{{\omega ^{ - 14}}}}$
\[ = \dfrac{3}{{{\omega ^2}}} + \dfrac{1}{{{\omega ^{12}}}} + 3{\omega ^{14}}\]
Convert the power of $\omega $ in terms of ${\omega ^3}$, because ${\omega ^3} = 1$:-
\[ = \dfrac{{3\omega }}{{{\omega ^3}}} + \dfrac{1}{{{{\left( {{\omega ^3}} \right)}^4}}} + 3{\left( {{\omega ^3}} \right)^4} \cdot {\omega ^2}\]
Put ${\omega ^3} = 1$ and simplify the above,
\[ = \dfrac{{3\omega }}{1} + \dfrac{1}{{{{\left( 1 \right)}^4}}} + 3{\left( 1 \right)^4} \cdot {\omega ^2}\]
\[ = 3\omega + 1 + 3{\omega ^2}\]
$ = 3\left( {\omega + {\omega ^2}} \right) + 1$
Since $1 + \omega + {\omega ^2} = 0$$ \Rightarrow \omega + {\omega ^2} = - 1$
$ = 3\left( { - 1} \right) + 1$
$
= - 3 + 1 \\
= - 2 \\
$
So, $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$$ = - 2$
Hence, option (A) is the correct answer.
Note: Remember the formulae regarding $\omega $ i.e., ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$ to solve these types of problems. Also, it is important to reduce the high powers of $\omega $into small powers of $\omega $, as we have done in this question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

