
Let $\omega $ be a solution of ${x^3} - 1 = 0$ with $\operatorname{Im} \left( \omega \right) > 0$. If $a = 2$ with b and c satisfying
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]......\left( E \right)\]
Then the value of $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$ is :
(A) $ - 2$
(B) $2$
(C) $3$
(D) $ - 3$
Answer
512.4k+ views
Hint: The multiplication of two matrices is possible if the no. of columns in matrix A is equal to the no. of rows in matrix B. Here we multiplied the two given matrix and form the equations by comparing the values of both sides.
Complete step-by-step answer:
Since, \[a,b\] and $c$ be three real numbers satisfies
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]\]
So, we get the equations
$
a + 8b + 7c = 0 \\
9a + 2b + 3c = 0 \\
7a + 7b + 7c = 0 \Rightarrow a + b + c = 0 \\
$
Since $a = 2$, so the equations become
$
2 + 8b + 7c = 0 \Rightarrow 8b + 7c = - 2....(1) \\
9\left( 2 \right) + 2b + 3c = 0 \Rightarrow 2b + 3c = - 18....(2) \\
2 + b + c = 0 \Rightarrow b + c = - 2....(3) \\
$
Multiply equation (3) by $7$ and subtract it from (1), we get
$8b + 7c - \left( {7b + 7c} \right) = - 2 - \left( { - 14} \right)$
$
\Rightarrow 8b + 7c - 7b - 7c = - 2 + 14 \\
\Rightarrow b = 12 \\
$
Substitute the value of $b$ in equation (3), we get
$
12 + c = - 2 \\
\Rightarrow c = - 2 - 12 \\
\Rightarrow c = - 14 \\
$
So, we have $a = 2,b = 12,c = - 14$
Now, $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$$ = \dfrac{3}{{{\omega ^2}}} + \dfrac{1}{{{\omega ^{12}}}} + \dfrac{3}{{{\omega ^{ - 14}}}}$
\[ = \dfrac{3}{{{\omega ^2}}} + \dfrac{1}{{{\omega ^{12}}}} + 3{\omega ^{14}}\]
Convert the power of $\omega $ in terms of ${\omega ^3}$, because ${\omega ^3} = 1$:-
\[ = \dfrac{{3\omega }}{{{\omega ^3}}} + \dfrac{1}{{{{\left( {{\omega ^3}} \right)}^4}}} + 3{\left( {{\omega ^3}} \right)^4} \cdot {\omega ^2}\]
Put ${\omega ^3} = 1$ and simplify the above,
\[ = \dfrac{{3\omega }}{1} + \dfrac{1}{{{{\left( 1 \right)}^4}}} + 3{\left( 1 \right)^4} \cdot {\omega ^2}\]
\[ = 3\omega + 1 + 3{\omega ^2}\]
$ = 3\left( {\omega + {\omega ^2}} \right) + 1$
Since $1 + \omega + {\omega ^2} = 0$$ \Rightarrow \omega + {\omega ^2} = - 1$
$ = 3\left( { - 1} \right) + 1$
$
= - 3 + 1 \\
= - 2 \\
$
So, $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$$ = - 2$
Hence, option (A) is the correct answer.
Note: Remember the formulae regarding $\omega $ i.e., ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$ to solve these types of problems. Also, it is important to reduce the high powers of $\omega $into small powers of $\omega $, as we have done in this question.
Complete step-by-step answer:
Since, \[a,b\] and $c$ be three real numbers satisfies
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]\]
So, we get the equations
$
a + 8b + 7c = 0 \\
9a + 2b + 3c = 0 \\
7a + 7b + 7c = 0 \Rightarrow a + b + c = 0 \\
$
Since $a = 2$, so the equations become
$
2 + 8b + 7c = 0 \Rightarrow 8b + 7c = - 2....(1) \\
9\left( 2 \right) + 2b + 3c = 0 \Rightarrow 2b + 3c = - 18....(2) \\
2 + b + c = 0 \Rightarrow b + c = - 2....(3) \\
$
Multiply equation (3) by $7$ and subtract it from (1), we get
$8b + 7c - \left( {7b + 7c} \right) = - 2 - \left( { - 14} \right)$
$
\Rightarrow 8b + 7c - 7b - 7c = - 2 + 14 \\
\Rightarrow b = 12 \\
$
Substitute the value of $b$ in equation (3), we get
$
12 + c = - 2 \\
\Rightarrow c = - 2 - 12 \\
\Rightarrow c = - 14 \\
$
So, we have $a = 2,b = 12,c = - 14$
Now, $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$$ = \dfrac{3}{{{\omega ^2}}} + \dfrac{1}{{{\omega ^{12}}}} + \dfrac{3}{{{\omega ^{ - 14}}}}$
\[ = \dfrac{3}{{{\omega ^2}}} + \dfrac{1}{{{\omega ^{12}}}} + 3{\omega ^{14}}\]
Convert the power of $\omega $ in terms of ${\omega ^3}$, because ${\omega ^3} = 1$:-
\[ = \dfrac{{3\omega }}{{{\omega ^3}}} + \dfrac{1}{{{{\left( {{\omega ^3}} \right)}^4}}} + 3{\left( {{\omega ^3}} \right)^4} \cdot {\omega ^2}\]
Put ${\omega ^3} = 1$ and simplify the above,
\[ = \dfrac{{3\omega }}{1} + \dfrac{1}{{{{\left( 1 \right)}^4}}} + 3{\left( 1 \right)^4} \cdot {\omega ^2}\]
\[ = 3\omega + 1 + 3{\omega ^2}\]
$ = 3\left( {\omega + {\omega ^2}} \right) + 1$
Since $1 + \omega + {\omega ^2} = 0$$ \Rightarrow \omega + {\omega ^2} = - 1$
$ = 3\left( { - 1} \right) + 1$
$
= - 3 + 1 \\
= - 2 \\
$
So, $\dfrac{3}{{{\omega ^a}}} + \dfrac{1}{{{\omega ^b}}} + \dfrac{3}{{{\omega ^c}}}$$ = - 2$
Hence, option (A) is the correct answer.
Note: Remember the formulae regarding $\omega $ i.e., ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$ to solve these types of problems. Also, it is important to reduce the high powers of $\omega $into small powers of $\omega $, as we have done in this question.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
