
Let \[OB=\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,\ and\ OA=4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,\] . The distance of the point B from the straight line passing through A and parallel to the vector \[2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\] is,
A. $\dfrac{7\sqrt{5}}{9}$
B. $\dfrac{5\sqrt{7}}{9}$
C. $\dfrac{3\sqrt{5}}{7}$
D. $\dfrac{9\sqrt{5}}{7}$
E. $\dfrac{9\sqrt{7}}{5}$
Answer
614.7k+ views
Hint: At first write the equation of line passing through A and parallel to \[2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\]. Equation of line passing through a point $\overset{\to }{\mathop{a}}\,$ and parallel to $\overset{\to }{\mathop{b}}\,$ can be written as $\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,$ . Now, find the distance of point B from this line by using the formula $\left| \dfrac{\left( {{a}_{2}}-{{a}_{1}} \right)\times b}{\left| b \right|} \right|$ , where $\overset{\to }{\mathop{{{a}_{2}}}}\,$ is the point from which distance is to be find, $\overset{\to }{\mathop{{{a}_{1}}}}\,$ is the point through which the line is passing and $\overset{\to }{\mathop{b}}\,$ is vector parallel to the line.
Complete step-by-step answer:
We have to find the distance of B from the straight line passing through A and parallel to vector \[2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\].
For this let us find the equation of straight line passing through A and parallel to \[2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\].
We know equation of a line passing through point A and parallel to a vector $\overset{\to }{\mathop{b}}\,$ can be written as $\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,$ where $'\lambda '$ is an arbitrary constant.
Here,
\[\begin{align}
& \overset{\to }{\mathop{a}}\,=\ \overset{\to }{\mathop{OA}}\,=4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \\
& and\ \overset{\to }{\mathop{b}}\,=2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}\]
So, equation of the line \[\left( 4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right)+\lambda \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)\] .
Now, we have to find the distance of point B from the above obtained line.
We know the formula for distance of a point B $\left( \overset{\to }{\mathop{{{a}_{2}}}}\, \right)$ from a line $\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,$is \[\left| \dfrac{\left( \overset{\to }{\mathop{{{a}_{2}}}}\,-\overset{\to }{\mathop{a}}\, \right)\times \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|} \right|\].
Here,
\[\begin{align}
& \overset{\to }{\mathop{{{a}_{2}}}}\,=\ \overset{\to }{\mathop{OB}}\,=\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \\
& and\ \overset{\to }{\mathop{a}}\,=4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \\
& and\ \overset{\to }{\mathop{b}}\,=2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}\]
Hence, the required distance,
\[\begin{align}
& =\left| \dfrac{\left[ \left( \overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right)-\left( 4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right) \right]\times \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|} \right| \\
& =\left| \left[ \dfrac{\left( -3\overset{\hat{\ }}{\mathop{i}}\,+0\overset{\hat{\ }}{\mathop{j}}\,+0\overset{\hat{\ }}{\mathop{k}}\, \right)\times \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)}{\sqrt{{{\left( 2 \right)}^{2}}+{{\left( 3 \right)}^{2}}+{{\left( 6 \right)}^{2}}}} \right] \right| \\
\end{align}\]
We know, $\left| \overset{\to }{\mathop{x}}\, \right|$ of a vector \[\overset{\to }{\mathop{x}}\,={{x}_{1}}\overset{\hat{\ }}{\mathop{i}}\,+{{x}_{2}}\overset{\hat{\ }}{\mathop{j}}\,+{{x}_{3}}\overset{\hat{\ }}{\mathop{k}}\,\] is given by $\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}+{{x}_{3}}^{2}}$ . so, we have replaced $\left| \overset{\to }{\mathop{b}}\, \right|$ with \[\sqrt{{{\left( 2 \right)}^{2}}+{{\left( 3 \right)}^{2}}+{{\left( 6 \right)}^{2}}}\].
The required distance,
\[\begin{align}
& =\left| \dfrac{\left( -3\overset{\hat{\ }}{\mathop{i}}\, \right)\times \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)}{\sqrt{4+9+36}} \right| \\
& =\left| \dfrac{\left( -3\overset{\hat{\ }}{\mathop{i}}\, \right)\times \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)}{\sqrt{49}} \right| \\
& =\left| \dfrac{\left( -3\overset{\hat{\ }}{\mathop{i}}\, \right)\times \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)}{7} \right| \\
\end{align}\]
We know cross product of \[\left( {{a}_{1}}\overset{\hat{\ }}{\mathop{i}}\,+{{a}_{2}}\overset{\hat{\ }}{\mathop{j}}\,+{{a}_{3}}\overset{\hat{\ }}{\mathop{k}}\, \right)\ and\ \left( {{b}_{1}}\overset{\hat{\ }}{\mathop{i}}\,+{{b}_{2}}\overset{\hat{\ }}{\mathop{j}}\,+{{b}_{3}}\overset{\hat{\ }}{\mathop{k}}\, \right)\] is given by $\left| \begin{matrix}
i & j & k \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$ .
So, cross product of \[\left( -3\overset{\hat{\ }}{\mathop{i}}\, \right)\ and\ \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)\] will be,
$\begin{align}
& =\left| \begin{matrix}
i & j & k \\
-3 & 0 & 0 \\
2 & 3 & 6 \\
\end{matrix} \right| \\
& =-j\left( -18 \right)+k\left( -9 \right) \\
& =18\overset{\hat{\ }}{\mathop{j}}\,-9\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}$
So, the required distance,
$\begin{align}
& =\left| \dfrac{18\overset{\hat{\ }}{\mathop{j}}\,-9\overset{\hat{\ }}{\mathop{k}}\,}{7} \right| \\
& =\dfrac{\sqrt{{{\left( 18 \right)}^{2}}+{{\left( -9 \right)}^{2}}}}{7} \\
& =\dfrac{\sqrt{324+81}}{7} \\
& =\dfrac{\sqrt{2105}}{7} \\
& =\dfrac{9\sqrt{5}}{7} \\
\end{align}$
Therefore, the required distance is $\dfrac{9\sqrt{5}}{7}$ and option (D) is the correct answer.
Note: We have used $\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,$ form of equation of line. We can also use the form $\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}$ for writing the equation of line passing through A and parallel to given vector. And then find the foot of perpendicular from point B to the obtained line and finally calculate the distance between points B and foot of perpendicular to get the answer.
Complete step-by-step answer:
We have to find the distance of B from the straight line passing through A and parallel to vector \[2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\].
For this let us find the equation of straight line passing through A and parallel to \[2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\,\].
We know equation of a line passing through point A and parallel to a vector $\overset{\to }{\mathop{b}}\,$ can be written as $\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,$ where $'\lambda '$ is an arbitrary constant.
Here,
\[\begin{align}
& \overset{\to }{\mathop{a}}\,=\ \overset{\to }{\mathop{OA}}\,=4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \\
& and\ \overset{\to }{\mathop{b}}\,=2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}\]
So, equation of the line \[\left( 4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right)+\lambda \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)\] .
Now, we have to find the distance of point B from the above obtained line.
We know the formula for distance of a point B $\left( \overset{\to }{\mathop{{{a}_{2}}}}\, \right)$ from a line $\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,$is \[\left| \dfrac{\left( \overset{\to }{\mathop{{{a}_{2}}}}\,-\overset{\to }{\mathop{a}}\, \right)\times \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|} \right|\].
Here,
\[\begin{align}
& \overset{\to }{\mathop{{{a}_{2}}}}\,=\ \overset{\to }{\mathop{OB}}\,=\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \\
& and\ \overset{\to }{\mathop{a}}\,=4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \\
& and\ \overset{\to }{\mathop{b}}\,=2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}\]
Hence, the required distance,
\[\begin{align}
& =\left| \dfrac{\left[ \left( \overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right)-\left( 4\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right) \right]\times \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|} \right| \\
& =\left| \left[ \dfrac{\left( -3\overset{\hat{\ }}{\mathop{i}}\,+0\overset{\hat{\ }}{\mathop{j}}\,+0\overset{\hat{\ }}{\mathop{k}}\, \right)\times \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)}{\sqrt{{{\left( 2 \right)}^{2}}+{{\left( 3 \right)}^{2}}+{{\left( 6 \right)}^{2}}}} \right] \right| \\
\end{align}\]
We know, $\left| \overset{\to }{\mathop{x}}\, \right|$ of a vector \[\overset{\to }{\mathop{x}}\,={{x}_{1}}\overset{\hat{\ }}{\mathop{i}}\,+{{x}_{2}}\overset{\hat{\ }}{\mathop{j}}\,+{{x}_{3}}\overset{\hat{\ }}{\mathop{k}}\,\] is given by $\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}+{{x}_{3}}^{2}}$ . so, we have replaced $\left| \overset{\to }{\mathop{b}}\, \right|$ with \[\sqrt{{{\left( 2 \right)}^{2}}+{{\left( 3 \right)}^{2}}+{{\left( 6 \right)}^{2}}}\].
The required distance,
\[\begin{align}
& =\left| \dfrac{\left( -3\overset{\hat{\ }}{\mathop{i}}\, \right)\times \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)}{\sqrt{4+9+36}} \right| \\
& =\left| \dfrac{\left( -3\overset{\hat{\ }}{\mathop{i}}\, \right)\times \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)}{\sqrt{49}} \right| \\
& =\left| \dfrac{\left( -3\overset{\hat{\ }}{\mathop{i}}\, \right)\times \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)}{7} \right| \\
\end{align}\]
We know cross product of \[\left( {{a}_{1}}\overset{\hat{\ }}{\mathop{i}}\,+{{a}_{2}}\overset{\hat{\ }}{\mathop{j}}\,+{{a}_{3}}\overset{\hat{\ }}{\mathop{k}}\, \right)\ and\ \left( {{b}_{1}}\overset{\hat{\ }}{\mathop{i}}\,+{{b}_{2}}\overset{\hat{\ }}{\mathop{j}}\,+{{b}_{3}}\overset{\hat{\ }}{\mathop{k}}\, \right)\] is given by $\left| \begin{matrix}
i & j & k \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$ .
So, cross product of \[\left( -3\overset{\hat{\ }}{\mathop{i}}\, \right)\ and\ \left( 2\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+6\overset{\hat{\ }}{\mathop{k}}\, \right)\] will be,
$\begin{align}
& =\left| \begin{matrix}
i & j & k \\
-3 & 0 & 0 \\
2 & 3 & 6 \\
\end{matrix} \right| \\
& =-j\left( -18 \right)+k\left( -9 \right) \\
& =18\overset{\hat{\ }}{\mathop{j}}\,-9\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}$
So, the required distance,
$\begin{align}
& =\left| \dfrac{18\overset{\hat{\ }}{\mathop{j}}\,-9\overset{\hat{\ }}{\mathop{k}}\,}{7} \right| \\
& =\dfrac{\sqrt{{{\left( 18 \right)}^{2}}+{{\left( -9 \right)}^{2}}}}{7} \\
& =\dfrac{\sqrt{324+81}}{7} \\
& =\dfrac{\sqrt{2105}}{7} \\
& =\dfrac{9\sqrt{5}}{7} \\
\end{align}$
Therefore, the required distance is $\dfrac{9\sqrt{5}}{7}$ and option (D) is the correct answer.
Note: We have used $\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{a}}\,+\lambda \overset{\to }{\mathop{b}}\,$ form of equation of line. We can also use the form $\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}$ for writing the equation of line passing through A and parallel to given vector. And then find the foot of perpendicular from point B to the obtained line and finally calculate the distance between points B and foot of perpendicular to get the answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

