
Let o be a binary operation on the set of all non-zero rational numbers defined by , for all . Show that operation is commutative.
Answer
542.4k+ views
Hint: In the question, we want to show that is commutative. So write the binary operations and use the commutative property. You will get the answer to try it.
So in question, it is mentioned that we have to check whether is commutative.
It is given in the question that .
A binary operation is simply a rule for combining two values to create a new value. The most widely known binary operations are those learned in elementary school: addition, subtraction, multiplication, and division on various sets of numbers.
It is possible to define "new" binary operations.
Sometimes, a binary operation on a finite set (a set with a limited number of elements) is displayed in a table that shows how the operation is to be performed. Binary operations on a set are calculations that combine two elements of the set (called operands) to produce another element of the same set.
The binary operations on a non-empty set A are functions from to . The binary operation: to A. It is an operation of two elements of the set whose domains and co-domain are in the same set.
An operation of arity (arity is the number of arguments or operands taken by a function or operator.) two that involve several sets are sometimes also called a binary operation. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and the scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions.
So commutative property is the one that refers to moving stuff around. In addition, the rule is ; in numbers, this means .
For multiplication, the rule is ; in numbers, this means . Any time they refer to the Commutative Property, they want you to move stuff around; any time a computation depends on moving stuff around, they want you to say that the computation uses the Commutative Property.
So
So let us check for
So we get,
So we can see that commutative property is proved.
Note: Read the question carefully. Don’t jumble yourself with the operations. Also, you should know the commutative and associative properties. Don’t get confused about the concepts of properties. You should be familiar with binary operations.
So in question, it is mentioned that we have to check whether
It is given in the question that
A binary operation is simply a rule for combining two values to create a new value. The most widely known binary operations are those learned in elementary school: addition, subtraction, multiplication, and division on various sets of numbers.
It is possible to define "new" binary operations.
Sometimes, a binary operation on a finite set (a set with a limited number of elements) is displayed in a table that shows how the operation is to be performed. Binary operations on a set are calculations that combine two elements of the set (called operands) to produce another element of the same set.
The binary operations on a non-empty set A are functions from
An operation of arity (arity is the number of arguments or operands taken by a function or operator.) two that involve several sets are sometimes also called a binary operation. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and the scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions.
So commutative property is the one that refers to moving stuff around. In addition, the rule is
For multiplication, the rule is
So
So let us check for
So we get,
So we can see that commutative property is proved.
Note: Read the question carefully. Don’t jumble yourself with the operations. Also, you should know the commutative and associative properties. Don’t get confused about the concepts of properties. You should be familiar with binary operations.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

What is the chemical name and formula of sindoor class 11 chemistry CBSE
