
Let N be the greatest number that will divide 1305, 4665, 6905, leaving the same remainder in each case. Then the sum of the digits in N is.
(a)4
(b)5
(c)6
(d)8
Answer
604.8k+ views
Hint: Think of the HCF, as whenever the greatest divisor is asked, HCF is required to solve the question.
Complete step-by-step answer:
Given;
N be the greatest number that will divide 1305, 4665, 6905, leaving the same remainder in each case.
Now, we let the remainder to be r.
According to Euclid’s Division lemma, if there are two integers s and t, there is always q and r for which the equation s=tq+r, such that r is positive and less than q.
So, the numbers can be written as;
$1305=Nx+r............(i)$
$4665=Ny+r.............(ii)$
$6905=Nz+r.............(iii)$
Where x, y, z are integers.
Now,
Equation (ii) – Equation (i) :
$4665-1305=Ny-Nx+r-r$
$\begin{align}
& 3360=N\left( y-x \right) \\
& \Rightarrow 3360=Nk...........(iv) \\
\end{align}$
Similarly,
Equation (iii) – Equation (ii) :
$\begin{align}
& 2240=N\left( z-y \right) \\
& \Rightarrow 2240=Nl...........(v) \\
\end{align}$
Also,
Equation (iii) – Equation (i) :
$\begin{align}
& 5600=N\left( z-x \right) \\
& \Rightarrow 5600=Nm...........(vi) \\
\end{align}$
So from equation (iv), (v) and (vi);
We can say that 3360, 2240 and 5600 have N as one of their common factors.
We know, product of all common factors is the HCF.
So, for finding N we first have to find the value of HCF of 3360, 2240 and 5600 and if the HCF is smaller than the smallest number initially mentioned in the question i.e. 1305 then it will be our N.
Using method of factorisation for finding HCF;
\[3360=2\times 2\times 2\times 2\times 2\times 3\times 7\times 5\]
\[2240=2\times 2\times 2\times 2\times 2\times 2\times 7\times 5\]
\[5600=2\times 2\times 2\times 2\times 2\times 5\times 7\times 5\]
\[HCF=2\times 2\times 2\times 2\times 2\times 7\times 5=1120\]
Also, 1120 is smaller than 1305.
$\therefore N=1120$
Now, the sum of the digits of N=1+1+2+0=4.
Hence, the answer is option (a) 4.
Note: If we get HCF of 3360, 2240 and 5600 greater than 1305 then we should have to divide the HCF one by one with all the common factors of 3360, 2240 and 5600 and note the integer we get on dividing the HCF with each common factor. Now from the list of integers select the one which is greatest among the ones which are less than 1305 and these integers would be our N.
Complete step-by-step answer:
Given;
N be the greatest number that will divide 1305, 4665, 6905, leaving the same remainder in each case.
Now, we let the remainder to be r.
According to Euclid’s Division lemma, if there are two integers s and t, there is always q and r for which the equation s=tq+r, such that r is positive and less than q.
So, the numbers can be written as;
$1305=Nx+r............(i)$
$4665=Ny+r.............(ii)$
$6905=Nz+r.............(iii)$
Where x, y, z are integers.
Now,
Equation (ii) – Equation (i) :
$4665-1305=Ny-Nx+r-r$
$\begin{align}
& 3360=N\left( y-x \right) \\
& \Rightarrow 3360=Nk...........(iv) \\
\end{align}$
Similarly,
Equation (iii) – Equation (ii) :
$\begin{align}
& 2240=N\left( z-y \right) \\
& \Rightarrow 2240=Nl...........(v) \\
\end{align}$
Also,
Equation (iii) – Equation (i) :
$\begin{align}
& 5600=N\left( z-x \right) \\
& \Rightarrow 5600=Nm...........(vi) \\
\end{align}$
So from equation (iv), (v) and (vi);
We can say that 3360, 2240 and 5600 have N as one of their common factors.
We know, product of all common factors is the HCF.
So, for finding N we first have to find the value of HCF of 3360, 2240 and 5600 and if the HCF is smaller than the smallest number initially mentioned in the question i.e. 1305 then it will be our N.
Using method of factorisation for finding HCF;
\[3360=2\times 2\times 2\times 2\times 2\times 3\times 7\times 5\]
\[2240=2\times 2\times 2\times 2\times 2\times 2\times 7\times 5\]
\[5600=2\times 2\times 2\times 2\times 2\times 5\times 7\times 5\]
\[HCF=2\times 2\times 2\times 2\times 2\times 7\times 5=1120\]
Also, 1120 is smaller than 1305.
$\therefore N=1120$
Now, the sum of the digits of N=1+1+2+0=4.
Hence, the answer is option (a) 4.
Note: If we get HCF of 3360, 2240 and 5600 greater than 1305 then we should have to divide the HCF one by one with all the common factors of 3360, 2240 and 5600 and note the integer we get on dividing the HCF with each common factor. Now from the list of integers select the one which is greatest among the ones which are less than 1305 and these integers would be our N.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


