
Let \[m\] be the value of the left derivative at \[x=2\] of the function \[f\left( x \right)=\left[ x \right]\sin \left( \pi x \right)\] ( $ \text{ [ ] } $ is the usual symbol). Then \[\left[ m \right]\] is equal to:
Answer
600k+ views
Hint: The value of the left derivative of a function \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] .
Complete step-by-step solution -
The given function is \[f\left( x \right)=\left[ x \right]\sin \left( \pi x \right)\] . We are asked to find the value of \[\left[ m \right]\] , where \[m\] is the value of the left derivative of the function \[f(x)\] at \[x=2\] and $\text{ [ ] } $ is the greatest integer function.
First of all, we will calculate the value of the left derivative of the function \[f\left( x \right)=\left[ x \right]\sin \left( \pi x \right)\] .
We know, the left derivative of a function \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] .
Now, we will calculate the value of the left derivative of the function at\[x=2\] .
So, the left derivative of the function at \[x=2\] is given as \[L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 2-h \right)-f\left( 2 \right)}{-h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \left[ 2-h \right]\sin \left( 2-h \right)\pi \right)-\left( \left[ 2 \right]\sin 2\pi \right)}{-h}\]
We know, $\sin n\pi =0$ , where $n$ is an integer.
$\Rightarrow L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \left[ 2-h \right]\sin \left( 2-h \right)\pi \right)-0}{-h}$
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \left[ 2-h \right]\sin \left( 2-h \right)\pi \right)}{-h}\]
Now, we know, $2-h$ is a number which is slightly less than $2$ . On applying the greatest integer function to this value, it becomes equal to $1$ .
\[\Rightarrow L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( 2-h \right)\pi }{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( 2\pi -h\pi \right)}{-h}\]
Now, we know, $\sin \left( 2\pi -\theta \right)=-\sin \theta $ . So, the value of $\sin \left( 2\pi -h\pi \right)$ is equal to $-\sin \left( h\pi \right)$ .
\[L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sin h\pi }{-h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin h\pi }{h}\]
We can multiply and divide $\dfrac{\sin \pi h}{h}$ by $\pi $ . We get $L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\pi \sin h\pi }{\pi h}$ which can be written as \[L'=\pi \underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin h\pi }{\pi h}\] because $\pi $ is a constant and is independent of $h$ . Now, as $h$ approaches $0$ , $\pi h$ also approach $0$ . So, we can write the limit as \[L'=\pi \underset{\pi h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin h\pi }{\pi h}\] .
Now, we know, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\] . So, \[\underset{\pi h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin h\pi }{\pi h}=1\] .
$\Rightarrow L'=\pi \times 1=\pi $
So, the value of the left derivative of the function \[f\left( x \right)=\left[ x \right]\sin \left( \pi x \right)\] at \[x=2\] is equal to $\pi $ .
Now, in the question, it is given that the value of the left derivative of the function at \[x=2\] is equal to \[m\] .
So, we can say that the value of \[m\] is equal to $\pi $ .
Now, on applying greatest integer function to \[m\], we get
\[\left[ m \right]=\left[ \pi \right]=\left[ 3.141 \right]\]
So, \[\left[ m \right]=3\]
Hence, the value of \[\left[ m \right]\] is equal to \[3\] .
Note: \[\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 2-h \right]=1\] because when \[h\] approaches \[0\] from the right side, its value is slightly greater than \[0\] . On subtracting a number near to \[0\] from \[2\] , the value obtained is slightly less than \[2\] . On applying the greatest integer function to this number, it is rounded down to the nearest integer, i.e. \[1\] . Students generally make a mistake of writing \[\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 2-h \right]=2\] . Such mistakes should be avoided as because of such mistakes, students can end up getting a wrong answer.
Complete step-by-step solution -
The given function is \[f\left( x \right)=\left[ x \right]\sin \left( \pi x \right)\] . We are asked to find the value of \[\left[ m \right]\] , where \[m\] is the value of the left derivative of the function \[f(x)\] at \[x=2\] and $\text{ [ ] } $ is the greatest integer function.
First of all, we will calculate the value of the left derivative of the function \[f\left( x \right)=\left[ x \right]\sin \left( \pi x \right)\] .
We know, the left derivative of a function \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] .
Now, we will calculate the value of the left derivative of the function at\[x=2\] .
So, the left derivative of the function at \[x=2\] is given as \[L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 2-h \right)-f\left( 2 \right)}{-h}\] .
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \left[ 2-h \right]\sin \left( 2-h \right)\pi \right)-\left( \left[ 2 \right]\sin 2\pi \right)}{-h}\]
We know, $\sin n\pi =0$ , where $n$ is an integer.
$\Rightarrow L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \left[ 2-h \right]\sin \left( 2-h \right)\pi \right)-0}{-h}$
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \left[ 2-h \right]\sin \left( 2-h \right)\pi \right)}{-h}\]
Now, we know, $2-h$ is a number which is slightly less than $2$ . On applying the greatest integer function to this value, it becomes equal to $1$ .
\[\Rightarrow L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( 2-h \right)\pi }{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( 2\pi -h\pi \right)}{-h}\]
Now, we know, $\sin \left( 2\pi -\theta \right)=-\sin \theta $ . So, the value of $\sin \left( 2\pi -h\pi \right)$ is equal to $-\sin \left( h\pi \right)$ .
\[L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sin h\pi }{-h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin h\pi }{h}\]
We can multiply and divide $\dfrac{\sin \pi h}{h}$ by $\pi $ . We get $L'=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\pi \sin h\pi }{\pi h}$ which can be written as \[L'=\pi \underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin h\pi }{\pi h}\] because $\pi $ is a constant and is independent of $h$ . Now, as $h$ approaches $0$ , $\pi h$ also approach $0$ . So, we can write the limit as \[L'=\pi \underset{\pi h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin h\pi }{\pi h}\] .
Now, we know, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\] . So, \[\underset{\pi h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin h\pi }{\pi h}=1\] .
$\Rightarrow L'=\pi \times 1=\pi $
So, the value of the left derivative of the function \[f\left( x \right)=\left[ x \right]\sin \left( \pi x \right)\] at \[x=2\] is equal to $\pi $ .
Now, in the question, it is given that the value of the left derivative of the function at \[x=2\] is equal to \[m\] .
So, we can say that the value of \[m\] is equal to $\pi $ .
Now, on applying greatest integer function to \[m\], we get
\[\left[ m \right]=\left[ \pi \right]=\left[ 3.141 \right]\]
So, \[\left[ m \right]=3\]
Hence, the value of \[\left[ m \right]\] is equal to \[3\] .
Note: \[\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 2-h \right]=1\] because when \[h\] approaches \[0\] from the right side, its value is slightly greater than \[0\] . On subtracting a number near to \[0\] from \[2\] , the value obtained is slightly less than \[2\] . On applying the greatest integer function to this number, it is rounded down to the nearest integer, i.e. \[1\] . Students generally make a mistake of writing \[\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 2-h \right]=2\] . Such mistakes should be avoided as because of such mistakes, students can end up getting a wrong answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

