
Let M be a $3\times 3$ matrix satisfying $M\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 \\
2 \\
3 \\
\end{matrix} \right]$, $M\left[ \begin{matrix}
1 \\
-1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
1 \\
-1 \\
\end{matrix} \right]$ and $M\left[ \begin{matrix}
1 \\
1 \\
1 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
0 \\
12 \\
\end{matrix} \right]$ then, find the sum of the diagonal entries of M.
Answer
586.2k+ views
Hint: M be a $3\times 3$ matrix which satisfies the given matrix multiplication.
So, we try to assume the matrix M.
Let M be $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]$. We need to find the sum of the diagonal entries of M which is $\left( a+e+i \right)$.
Complete step-by-step solution:
Now, we break down the matrix multiplication to get the equation of the unknowns.
We have $M\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 \\
2 \\
3 \\
\end{matrix} \right]$ which implies $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 \\
2 \\
3 \\
\end{matrix} \right]$.
Breaking this, we get $b\times 1=b=-1$, $e\times 1=e=2$, $h\times 1=h=3$. We got value of 3 unknowns. We also have $M\left[ \begin{matrix}
1 \\
-1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
1 \\
-1 \\
\end{matrix} \right]$ which implies $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
-1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
1 \\
-1 \\
\end{matrix} \right]$.
Breaking this, we get $a\times 1+b\times \left( -1 \right)=a-b=1$, $d\times 1+e\times \left( -1 \right)=d-e=1$, $g\times 1+h\times \left( -1 \right)=g-h=-1$.
We put values of b, e, h to get values of a, d, h.
So, $a+1=1\Rightarrow a=0$, $d-2=1\Rightarrow d=3$, $g-3=-1\Rightarrow g=2$.
Lastly, we have $M\left[ \begin{matrix}
1 \\
1 \\
1 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
0 \\
12 \\
\end{matrix} \right]$ which implies $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
1 \\
1 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
0 \\
12 \\
\end{matrix} \right]$.
Breaking this, we get $a\times 1+b\times 1+c\times 1=a+b+c=0$, $d\times 1+e\times 1+f\times 1=d+e+f=0$, $g\times 1+h\times 1+i\times 1=g+h+i=12$.
We put values of 6 values we know to get the others.
So, $0-1+c=0\Rightarrow c=1$, $3+2+f=0\Rightarrow f=-5$, $2+3+i=12\Rightarrow i=7$.
We got all the 9 unknowns to get the matrix $M=\left[ \begin{matrix}
0 & -1 & 1 \\
3 & 2 & -5 \\
2 & 3 & 7 \\
\end{matrix} \right]$.
The sum of the diagonal entries of M is $\left( a+e+i \right)=0+2+7=9$.
Note: We need to remember that we can’t use the inverse form here as the given multipliers are not a square matrix. Only square matrices have the inverse. The multipliers are all $3\times 1$ matrices. We need to get 9 equations to get the 9 unknowns.
So, we try to assume the matrix M.
Let M be $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]$. We need to find the sum of the diagonal entries of M which is $\left( a+e+i \right)$.
Complete step-by-step solution:
Now, we break down the matrix multiplication to get the equation of the unknowns.
We have $M\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 \\
2 \\
3 \\
\end{matrix} \right]$ which implies $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 \\
2 \\
3 \\
\end{matrix} \right]$.
Breaking this, we get $b\times 1=b=-1$, $e\times 1=e=2$, $h\times 1=h=3$. We got value of 3 unknowns. We also have $M\left[ \begin{matrix}
1 \\
-1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
1 \\
-1 \\
\end{matrix} \right]$ which implies $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
-1 \\
0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
1 \\
-1 \\
\end{matrix} \right]$.
Breaking this, we get $a\times 1+b\times \left( -1 \right)=a-b=1$, $d\times 1+e\times \left( -1 \right)=d-e=1$, $g\times 1+h\times \left( -1 \right)=g-h=-1$.
We put values of b, e, h to get values of a, d, h.
So, $a+1=1\Rightarrow a=0$, $d-2=1\Rightarrow d=3$, $g-3=-1\Rightarrow g=2$.
Lastly, we have $M\left[ \begin{matrix}
1 \\
1 \\
1 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
0 \\
12 \\
\end{matrix} \right]$ which implies $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
1 \\
1 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
0 \\
12 \\
\end{matrix} \right]$.
Breaking this, we get $a\times 1+b\times 1+c\times 1=a+b+c=0$, $d\times 1+e\times 1+f\times 1=d+e+f=0$, $g\times 1+h\times 1+i\times 1=g+h+i=12$.
We put values of 6 values we know to get the others.
So, $0-1+c=0\Rightarrow c=1$, $3+2+f=0\Rightarrow f=-5$, $2+3+i=12\Rightarrow i=7$.
We got all the 9 unknowns to get the matrix $M=\left[ \begin{matrix}
0 & -1 & 1 \\
3 & 2 & -5 \\
2 & 3 & 7 \\
\end{matrix} \right]$.
The sum of the diagonal entries of M is $\left( a+e+i \right)=0+2+7=9$.
Note: We need to remember that we can’t use the inverse form here as the given multipliers are not a square matrix. Only square matrices have the inverse. The multipliers are all $3\times 1$ matrices. We need to get 9 equations to get the 9 unknowns.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

