
Let M be a \[3 \times 3\] matrix satisfying \[M\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right],M\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right],\] and \[M\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right].\] Then the sum of the diagonal entries of M is ____.
Answer
543.9k+ views
Hint: To solve this question, we will start with assuming the \[3 \times 3\] matrix. Now we have been given three conditions which satisfies the matrix M. So, one by one we will take the condition, and put the value of assumed matrix M, then on first condition, we will get the value of three entries of the matrix, on solving the second condition, we will get the values of another 3 entries of matrix, similarly on solving the third condition, we will get the last three entries of matrix, hence after getting all the entries of the matrix, we will take the sum of one of the diagonal of matrix, and hence we will get our required answer.
Complete step by step solution:
We have been given that M is a \[3 \times 3\] matrix. So, let $M = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]$
Now, according to the question, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right] \\
\left[ {\begin{array}{*{20}{c}}
b \\
e \\
h
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right] \\
b = - 1,e = 2,h = 3. \\
\]
It is also given that, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right]\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right] \\
\left[ {\begin{array}{*{20}{c}}
{a - b} \\
{d - e} \\
{g - h}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right] \\
a - b = 1,d - e = 1,g - h = - 1. \\
\]
Then, \[a - \left( { - 1} \right) = 1 \Rightarrow a = 0\]
\[
d - \left( 2 \right) = 1 \Rightarrow d = 3 \\
g - \left( 3 \right) = - 1 \Rightarrow g = 2 \\
\]
Also, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right].\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right]. \\
\left[ {\begin{array}{*{20}{c}}
{a + b + c} \\
{d + e + f} \\
{g + h + i}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right] \\
a + b + c = 0,d + e + f = 0,g + h + i = 12. \\
\]
Then, $(0) + ( - 1) + c = 0 \Rightarrow c = 1$
$
(3) + (2) + f = 0 \Rightarrow f = - 5 \\
(2) + (3) + i = 12 \Rightarrow i = 7 \\
$
So, we get, \[a = 0,{\text{ }}b = - 1,{\text{ }}c = 1,{\text{ }}d = 3,{\text{ }}e = 2,{\text{ }}f = - 5,{\text{ }}g = 2,{\text{ }}h = 3\] and \[i = 7.\]
Thus, matrix, $M = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&1 \\
3&2&{ - 5} \\
2&3&7
\end{array}} \right]$
Now, we have been asked in the question to find the sum of the diagonal entries of M. So, the diagonal entries of M is, a, e and i.
So, \[a + e + i = 0 + 2 + 7 = 9.\]
Thus, sum of the diagonal entries of M is \[9.\]
So, the correct answer is “9”.
Note: Students should note that in the question we have only taken the value of one of the diagonals of a matrix, but we know that there are two diagonals, so another answer would have been equals to \[5,\] since, \[c + e + g = 1 + 2 + 2 = 5,\] is the sum of the entries of another diagonal.
Complete step by step solution:
We have been given that M is a \[3 \times 3\] matrix. So, let $M = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]$
Now, according to the question, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right] \\
\left[ {\begin{array}{*{20}{c}}
b \\
e \\
h
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right] \\
b = - 1,e = 2,h = 3. \\
\]
It is also given that, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right]\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right] \\
\left[ {\begin{array}{*{20}{c}}
{a - b} \\
{d - e} \\
{g - h}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right] \\
a - b = 1,d - e = 1,g - h = - 1. \\
\]
Then, \[a - \left( { - 1} \right) = 1 \Rightarrow a = 0\]
\[
d - \left( 2 \right) = 1 \Rightarrow d = 3 \\
g - \left( 3 \right) = - 1 \Rightarrow g = 2 \\
\]
Also, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right].\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right]. \\
\left[ {\begin{array}{*{20}{c}}
{a + b + c} \\
{d + e + f} \\
{g + h + i}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right] \\
a + b + c = 0,d + e + f = 0,g + h + i = 12. \\
\]
Then, $(0) + ( - 1) + c = 0 \Rightarrow c = 1$
$
(3) + (2) + f = 0 \Rightarrow f = - 5 \\
(2) + (3) + i = 12 \Rightarrow i = 7 \\
$
So, we get, \[a = 0,{\text{ }}b = - 1,{\text{ }}c = 1,{\text{ }}d = 3,{\text{ }}e = 2,{\text{ }}f = - 5,{\text{ }}g = 2,{\text{ }}h = 3\] and \[i = 7.\]
Thus, matrix, $M = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&1 \\
3&2&{ - 5} \\
2&3&7
\end{array}} \right]$
Now, we have been asked in the question to find the sum of the diagonal entries of M. So, the diagonal entries of M is, a, e and i.
So, \[a + e + i = 0 + 2 + 7 = 9.\]
Thus, sum of the diagonal entries of M is \[9.\]
So, the correct answer is “9”.
Note: Students should note that in the question we have only taken the value of one of the diagonals of a matrix, but we know that there are two diagonals, so another answer would have been equals to \[5,\] since, \[c + e + g = 1 + 2 + 2 = 5,\] is the sum of the entries of another diagonal.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

