
Let M be a \[3 \times 3\] matrix satisfying \[M\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right],M\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right],\] and \[M\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right].\] Then the sum of the diagonal entries of M is ____.
Answer
557.7k+ views
Hint: To solve this question, we will start with assuming the \[3 \times 3\] matrix. Now we have been given three conditions which satisfies the matrix M. So, one by one we will take the condition, and put the value of assumed matrix M, then on first condition, we will get the value of three entries of the matrix, on solving the second condition, we will get the values of another 3 entries of matrix, similarly on solving the third condition, we will get the last three entries of matrix, hence after getting all the entries of the matrix, we will take the sum of one of the diagonal of matrix, and hence we will get our required answer.
Complete step by step solution:
We have been given that M is a \[3 \times 3\] matrix. So, let $M = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]$
Now, according to the question, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right] \\
\left[ {\begin{array}{*{20}{c}}
b \\
e \\
h
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right] \\
b = - 1,e = 2,h = 3. \\
\]
It is also given that, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right]\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right] \\
\left[ {\begin{array}{*{20}{c}}
{a - b} \\
{d - e} \\
{g - h}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right] \\
a - b = 1,d - e = 1,g - h = - 1. \\
\]
Then, \[a - \left( { - 1} \right) = 1 \Rightarrow a = 0\]
\[
d - \left( 2 \right) = 1 \Rightarrow d = 3 \\
g - \left( 3 \right) = - 1 \Rightarrow g = 2 \\
\]
Also, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right].\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right]. \\
\left[ {\begin{array}{*{20}{c}}
{a + b + c} \\
{d + e + f} \\
{g + h + i}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right] \\
a + b + c = 0,d + e + f = 0,g + h + i = 12. \\
\]
Then, $(0) + ( - 1) + c = 0 \Rightarrow c = 1$
$
(3) + (2) + f = 0 \Rightarrow f = - 5 \\
(2) + (3) + i = 12 \Rightarrow i = 7 \\
$
So, we get, \[a = 0,{\text{ }}b = - 1,{\text{ }}c = 1,{\text{ }}d = 3,{\text{ }}e = 2,{\text{ }}f = - 5,{\text{ }}g = 2,{\text{ }}h = 3\] and \[i = 7.\]
Thus, matrix, $M = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&1 \\
3&2&{ - 5} \\
2&3&7
\end{array}} \right]$
Now, we have been asked in the question to find the sum of the diagonal entries of M. So, the diagonal entries of M is, a, e and i.
So, \[a + e + i = 0 + 2 + 7 = 9.\]
Thus, sum of the diagonal entries of M is \[9.\]
So, the correct answer is “9”.
Note: Students should note that in the question we have only taken the value of one of the diagonals of a matrix, but we know that there are two diagonals, so another answer would have been equals to \[5,\] since, \[c + e + g = 1 + 2 + 2 = 5,\] is the sum of the entries of another diagonal.
Complete step by step solution:
We have been given that M is a \[3 \times 3\] matrix. So, let $M = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]$
Now, according to the question, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0 \\
1 \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right] \\
\left[ {\begin{array}{*{20}{c}}
b \\
e \\
h
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right] \\
b = - 1,e = 2,h = 3. \\
\]
It is also given that, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right]\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1 \\
{ - 1} \\
0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right] \\
\left[ {\begin{array}{*{20}{c}}
{a - b} \\
{d - e} \\
{g - h}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
{ - 1}
\end{array}} \right] \\
a - b = 1,d - e = 1,g - h = - 1. \\
\]
Then, \[a - \left( { - 1} \right) = 1 \Rightarrow a = 0\]
\[
d - \left( 2 \right) = 1 \Rightarrow d = 3 \\
g - \left( 3 \right) = - 1 \Rightarrow g = 2 \\
\]
Also, M satisfies,
\[M\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right].\]
\[
\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1 \\
1 \\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right]. \\
\left[ {\begin{array}{*{20}{c}}
{a + b + c} \\
{d + e + f} \\
{g + h + i}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0 \\
0 \\
{12}
\end{array}} \right] \\
a + b + c = 0,d + e + f = 0,g + h + i = 12. \\
\]
Then, $(0) + ( - 1) + c = 0 \Rightarrow c = 1$
$
(3) + (2) + f = 0 \Rightarrow f = - 5 \\
(2) + (3) + i = 12 \Rightarrow i = 7 \\
$
So, we get, \[a = 0,{\text{ }}b = - 1,{\text{ }}c = 1,{\text{ }}d = 3,{\text{ }}e = 2,{\text{ }}f = - 5,{\text{ }}g = 2,{\text{ }}h = 3\] and \[i = 7.\]
Thus, matrix, $M = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&1 \\
3&2&{ - 5} \\
2&3&7
\end{array}} \right]$
Now, we have been asked in the question to find the sum of the diagonal entries of M. So, the diagonal entries of M is, a, e and i.
So, \[a + e + i = 0 + 2 + 7 = 9.\]
Thus, sum of the diagonal entries of M is \[9.\]
So, the correct answer is “9”.
Note: Students should note that in the question we have only taken the value of one of the diagonals of a matrix, but we know that there are two diagonals, so another answer would have been equals to \[5,\] since, \[c + e + g = 1 + 2 + 2 = 5,\] is the sum of the entries of another diagonal.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

