
Let m and n be two positive integers greater than 1. If $\mathop {\lim }\limits_{\alpha \to 0} \left(
{\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2}$
the value of $\dfrac{m} {n}$ is
Answer
452.7k+ views
Hint:To find the required value of $\dfrac{m} {n}$,
Use the property of standard limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$.
Then simplify the limit with the help of the exponential property $\dfrac{{{a^m}}}
{{{a^n}}} = {a^{m - n}}$
and the identity ${a^{mn}} = {\left( {{a^m}} \right)^n}$.
Complete step by step solution:
The given limit is, $\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}}
\right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2}$
First we simplify the above expression by taking $e$ common from the numerator of the right hand side of the above expression.
$\begin{gathered}
\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} & & \to \left( 1 \right) \\
\end{gathered} $
Now, for $\alpha \to 0$; the value of the left hand side of the above limit becomes undefined.
So, we can find the standard limit of the left hand side of the above limit.
We know that for $a \to 0$
the value of the limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$.
Multiply and divide the left hand side of the expression (1) by $\cos {\alpha ^n} - 1$.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e}
{2} \\
$
Write the above limit as,
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
$
Use the standard limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$
in the above limit.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\left( 1 \right)\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
$
Multiply each side of the above expression by negative sign.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
- \left( {e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right)} \right) = - \left( { - \dfrac{e}
{2}} \right) \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right) = \dfrac{e}
{2} \\
$
Divide each side of the above expression by e.
$
\dfrac{{e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right)}}
{e} = \dfrac{e}
{{2e}} \\
\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right) = \dfrac{1}
{2} \\
$
It is seen that the value of the above limit $\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 -
\cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right)$
should be $\dfrac{1}
{2}$.
But for $\alpha \to 0$ ; the limit becomes again indefinite.
Now, multiply and divide the left hand side of the above limit by ${\alpha ^{2n}}$.
$
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^m}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^{2n}}}} = \dfrac{1}
{2} \\
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^m}}} = \dfrac{1}
{2} \\
$
Rewrite the above limit by using the exponential identities $\dfrac{{{a^m}}}
{{{a^n}}} = {a^{m - n}}$
and ${a^{mn}} = {\left( {{a^m}} \right)^n}$.
$
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^m}}} = \dfrac{1}
{2} \\
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{{\left( {{\alpha ^n}} \right)}^2}}} \cdot {\alpha ^{\left( {2n - m} \right)}} = \dfrac{1}
{2} \\
$
It is seen that the value of the left hand side of the above expression will be $\dfrac{1}
{2}$;
if $2n - m = 0$.
Subtract 2n from each side of the equation $2n - m = 0$.
$
2n - m - 2n = 0 - 2n \\
- m = - 2n \\
$
Multiply each side of the above expression with a negative sign.
$
- \left( { - m} \right) = - \left( { - 2n} \right) \\
m = 2n \\
$
Divide each side of the above expression by n.
$
m = 2n \\
\dfrac{m}
{n} = \dfrac{{2n}}
{n} \\
\dfrac{m}
{n} = 2 \\
$
Hence, the required value of $\dfrac{m} {n}$ is 2.
Note: The required value of the term $\dfrac{m} {n}$ can be determined by simplifying the given limit to $\dfrac{e} {2}$. Then we can use the half-angle formula of trigonometry that is, $\cos \left( \alpha \right) - 1 = 2{\sin^2}\left( {\dfrac{\alpha } {2}} \right)$
Use the property of standard limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$.
Then simplify the limit with the help of the exponential property $\dfrac{{{a^m}}}
{{{a^n}}} = {a^{m - n}}$
and the identity ${a^{mn}} = {\left( {{a^m}} \right)^n}$.
Complete step by step solution:
The given limit is, $\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}}
\right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2}$
First we simplify the above expression by taking $e$ common from the numerator of the right hand side of the above expression.
$\begin{gathered}
\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} & & \to \left( 1 \right) \\
\end{gathered} $
Now, for $\alpha \to 0$; the value of the left hand side of the above limit becomes undefined.
So, we can find the standard limit of the left hand side of the above limit.
We know that for $a \to 0$
the value of the limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$.
Multiply and divide the left hand side of the expression (1) by $\cos {\alpha ^n} - 1$.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e}
{2} \\
$
Write the above limit as,
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
$
Use the standard limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$
in the above limit.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\left( 1 \right)\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
$
Multiply each side of the above expression by negative sign.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
- \left( {e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right)} \right) = - \left( { - \dfrac{e}
{2}} \right) \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right) = \dfrac{e}
{2} \\
$
Divide each side of the above expression by e.
$
\dfrac{{e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right)}}
{e} = \dfrac{e}
{{2e}} \\
\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right) = \dfrac{1}
{2} \\
$
It is seen that the value of the above limit $\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 -
\cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right)$
should be $\dfrac{1}
{2}$.
But for $\alpha \to 0$ ; the limit becomes again indefinite.
Now, multiply and divide the left hand side of the above limit by ${\alpha ^{2n}}$.
$
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^m}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^{2n}}}} = \dfrac{1}
{2} \\
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^m}}} = \dfrac{1}
{2} \\
$
Rewrite the above limit by using the exponential identities $\dfrac{{{a^m}}}
{{{a^n}}} = {a^{m - n}}$
and ${a^{mn}} = {\left( {{a^m}} \right)^n}$.
$
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^m}}} = \dfrac{1}
{2} \\
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{{\left( {{\alpha ^n}} \right)}^2}}} \cdot {\alpha ^{\left( {2n - m} \right)}} = \dfrac{1}
{2} \\
$
It is seen that the value of the left hand side of the above expression will be $\dfrac{1}
{2}$;
if $2n - m = 0$.
Subtract 2n from each side of the equation $2n - m = 0$.
$
2n - m - 2n = 0 - 2n \\
- m = - 2n \\
$
Multiply each side of the above expression with a negative sign.
$
- \left( { - m} \right) = - \left( { - 2n} \right) \\
m = 2n \\
$
Divide each side of the above expression by n.
$
m = 2n \\
\dfrac{m}
{n} = \dfrac{{2n}}
{n} \\
\dfrac{m}
{n} = 2 \\
$
Hence, the required value of $\dfrac{m} {n}$ is 2.
Note: The required value of the term $\dfrac{m} {n}$ can be determined by simplifying the given limit to $\dfrac{e} {2}$. Then we can use the half-angle formula of trigonometry that is, $\cos \left( \alpha \right) - 1 = 2{\sin^2}\left( {\dfrac{\alpha } {2}} \right)$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
