
Let m and n be two positive integers greater than 1. If $\mathop {\lim }\limits_{\alpha \to 0} \left(
{\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2}$
the value of $\dfrac{m} {n}$ is
Answer
537.3k+ views
Hint:To find the required value of $\dfrac{m} {n}$,
Use the property of standard limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$.
Then simplify the limit with the help of the exponential property $\dfrac{{{a^m}}}
{{{a^n}}} = {a^{m - n}}$
and the identity ${a^{mn}} = {\left( {{a^m}} \right)^n}$.
Complete step by step solution:
The given limit is, $\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}}
\right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2}$
First we simplify the above expression by taking $e$ common from the numerator of the right hand side of the above expression.
$\begin{gathered}
\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} & & \to \left( 1 \right) \\
\end{gathered} $
Now, for $\alpha \to 0$; the value of the left hand side of the above limit becomes undefined.
So, we can find the standard limit of the left hand side of the above limit.
We know that for $a \to 0$
the value of the limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$.
Multiply and divide the left hand side of the expression (1) by $\cos {\alpha ^n} - 1$.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e}
{2} \\
$
Write the above limit as,
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
$
Use the standard limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$
in the above limit.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\left( 1 \right)\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
$
Multiply each side of the above expression by negative sign.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
- \left( {e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right)} \right) = - \left( { - \dfrac{e}
{2}} \right) \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right) = \dfrac{e}
{2} \\
$
Divide each side of the above expression by e.
$
\dfrac{{e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right)}}
{e} = \dfrac{e}
{{2e}} \\
\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right) = \dfrac{1}
{2} \\
$
It is seen that the value of the above limit $\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 -
\cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right)$
should be $\dfrac{1}
{2}$.
But for $\alpha \to 0$ ; the limit becomes again indefinite.
Now, multiply and divide the left hand side of the above limit by ${\alpha ^{2n}}$.
$
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^m}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^{2n}}}} = \dfrac{1}
{2} \\
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^m}}} = \dfrac{1}
{2} \\
$
Rewrite the above limit by using the exponential identities $\dfrac{{{a^m}}}
{{{a^n}}} = {a^{m - n}}$
and ${a^{mn}} = {\left( {{a^m}} \right)^n}$.
$
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^m}}} = \dfrac{1}
{2} \\
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{{\left( {{\alpha ^n}} \right)}^2}}} \cdot {\alpha ^{\left( {2n - m} \right)}} = \dfrac{1}
{2} \\
$
It is seen that the value of the left hand side of the above expression will be $\dfrac{1}
{2}$;
if $2n - m = 0$.
Subtract 2n from each side of the equation $2n - m = 0$.
$
2n - m - 2n = 0 - 2n \\
- m = - 2n \\
$
Multiply each side of the above expression with a negative sign.
$
- \left( { - m} \right) = - \left( { - 2n} \right) \\
m = 2n \\
$
Divide each side of the above expression by n.
$
m = 2n \\
\dfrac{m}
{n} = \dfrac{{2n}}
{n} \\
\dfrac{m}
{n} = 2 \\
$
Hence, the required value of $\dfrac{m} {n}$ is 2.
Note: The required value of the term $\dfrac{m} {n}$ can be determined by simplifying the given limit to $\dfrac{e} {2}$. Then we can use the half-angle formula of trigonometry that is, $\cos \left( \alpha \right) - 1 = 2{\sin^2}\left( {\dfrac{\alpha } {2}} \right)$
Use the property of standard limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$.
Then simplify the limit with the help of the exponential property $\dfrac{{{a^m}}}
{{{a^n}}} = {a^{m - n}}$
and the identity ${a^{mn}} = {\left( {{a^m}} \right)^n}$.
Complete step by step solution:
The given limit is, $\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}}
\right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2}$
First we simplify the above expression by taking $e$ common from the numerator of the right hand side of the above expression.
$\begin{gathered}
\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} & & \to \left( 1 \right) \\
\end{gathered} $
Now, for $\alpha \to 0$; the value of the left hand side of the above limit becomes undefined.
So, we can find the standard limit of the left hand side of the above limit.
We know that for $a \to 0$
the value of the limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$.
Multiply and divide the left hand side of the expression (1) by $\cos {\alpha ^n} - 1$.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e}
{2} \\
$
Write the above limit as,
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
$
Use the standard limit $\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}}
{a}} \right) = 1$
in the above limit.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}}
{{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\left( 1 \right)\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
$
Multiply each side of the above expression by negative sign.
$
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right) = - \dfrac{e}
{2} \\
- \left( {e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}}
{{{\alpha ^m}}}} \right)} \right) = - \left( { - \dfrac{e}
{2}} \right) \\
e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right) = \dfrac{e}
{2} \\
$
Divide each side of the above expression by e.
$
\dfrac{{e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right)}}
{e} = \dfrac{e}
{{2e}} \\
\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right) = \dfrac{1}
{2} \\
$
It is seen that the value of the above limit $\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 -
\cos {\alpha ^n}}}
{{{\alpha ^m}}}} \right)$
should be $\dfrac{1}
{2}$.
But for $\alpha \to 0$ ; the limit becomes again indefinite.
Now, multiply and divide the left hand side of the above limit by ${\alpha ^{2n}}$.
$
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^m}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^{2n}}}} = \dfrac{1}
{2} \\
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^m}}} = \dfrac{1}
{2} \\
$
Rewrite the above limit by using the exponential identities $\dfrac{{{a^m}}}
{{{a^n}}} = {a^{m - n}}$
and ${a^{mn}} = {\left( {{a^m}} \right)^n}$.
$
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}}
{{{\alpha ^m}}} = \dfrac{1}
{2} \\
\mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}}
{{{{\left( {{\alpha ^n}} \right)}^2}}} \cdot {\alpha ^{\left( {2n - m} \right)}} = \dfrac{1}
{2} \\
$
It is seen that the value of the left hand side of the above expression will be $\dfrac{1}
{2}$;
if $2n - m = 0$.
Subtract 2n from each side of the equation $2n - m = 0$.
$
2n - m - 2n = 0 - 2n \\
- m = - 2n \\
$
Multiply each side of the above expression with a negative sign.
$
- \left( { - m} \right) = - \left( { - 2n} \right) \\
m = 2n \\
$
Divide each side of the above expression by n.
$
m = 2n \\
\dfrac{m}
{n} = \dfrac{{2n}}
{n} \\
\dfrac{m}
{n} = 2 \\
$
Hence, the required value of $\dfrac{m} {n}$ is 2.
Note: The required value of the term $\dfrac{m} {n}$ can be determined by simplifying the given limit to $\dfrac{e} {2}$. Then we can use the half-angle formula of trigonometry that is, $\cos \left( \alpha \right) - 1 = 2{\sin^2}\left( {\dfrac{\alpha } {2}} \right)$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

