
Let in the given domain $f:\left[ 0,\dfrac{\pi }{2} \right]\to R: $ we have a function $f(x)=\sin x$ and in domain $g:\left[ 0,\dfrac{\pi }{2} \right]\to R: $ we have $g(x)=\cos x$. Show that each one of f and g is one-one but $\left( f+g \right)$ is not one-one.
Answer
513.3k+ views
Hint: To prove that the given function is one-one, assume two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the set of the domain of the given function and show that, if $f({{x}_{1}})=f({{x}_{2}})$ then, ${{x}_{1}}={{x}_{2}}$. If we are getting any other relation between ${{x}_{1}}$ and \[{{x}_{2}}\] then the function is not one-one.
Complete step-by-step solution -
For the function $f(x)=\sin x$.
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $f(x)$. Now, substituting $f({{x}_{1}})=f({{x}_{2}})$, we get,
$\sin {{x}_{1}}=\sin {{x}_{2}}$, we know that in the domain $\left[ 0,\dfrac{\pi }{2} \right]$ the value of sine ranges from 0 to 1, with a particular value for each angle. Therefore, for $\sin {{x}_{1}}=\sin {{x}_{2}}$, we must have ${{x}_{1}}={{x}_{2}}$.
Therefore, $f(x)=\sin x$ is a one-one function.
For the function $g(x)=\cos x$.
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $g(x)$ . Now, substituting $g({{x}_{1}})=g({{x}_{2}})$, we get,
$\cos {{x}_{1}}=\cos {{x}_{2}}$, we know that in the domain $\left[ 0,\dfrac{\pi }{2} \right]$ the value of cosine ranges from 1 to 0, with a particular value for each angle. Therefore, for $\cos {{x}_{1}}=\cos {{x}_{2}}$, we must have ${{x}_{1}}={{x}_{2}}$.
Therefore, $g(x)=\cos x$ is a one-one function.
Considering the function $\left( f+g \right)$.
$(f+g)=\sin x+\cos x$
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $\left( f+g \right)$. Now, substituting $(f+g)({{x}_{1}})=(f+g)({{x}_{2}})$, we get,
$\begin{align}
& \sin {{x}_{1}}+\cos {{x}_{1}}=\sin {{x}_{2}}+\cos {{x}_{2}} \\
& \Rightarrow \sin {{x}_{1}}-\sin {{x}_{2}}=\cos {{x}_{2}}-\cos {{x}_{1}} \\
\end{align}$
Applying the formula: $\sin a-\sin b=2\sin \left( \dfrac{a-b}{2} \right)\cos \left( \dfrac{a+b}{2} \right)$ and$\cos a-\cos b=2\sin \left( \dfrac{b-a}{2} \right)\sin \left( \dfrac{a+b}{2} \right)$, we get,
\[\begin{align}
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=2\sin \left( \dfrac{{{x}_{1}}-{{x}_{1}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \\
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=0 \\
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\
& \Rightarrow \sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\text{ or }\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\
\end{align}\]
Now, if \[\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)=0\], then \[\dfrac{{{x}_{1}}-{{x}_{2}}}{2}=0\] because $\sin {{0}^{\circ }}=0$. Therefore,
\[\begin{align}
& {{x}_{1}}-{{x}_{2}}=0 \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}\]
Also, if \[\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0\], then
\[\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)\]
Dividing both sides by \[\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)\], we get,
$1=\tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)$
We know that, $\tan \dfrac{\pi }{4}=1$. Therefore,
$\begin{align}
& \tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\tan \dfrac{\pi }{4} \\
& \Rightarrow \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\dfrac{\pi }{4} \\
& \Rightarrow {{x}_{1}}+{{x}_{2}}=\dfrac{\pi }{2} \\
& \Rightarrow {{x}_{1}}=\dfrac{\pi }{2}-{{x}_{2}} \\
\end{align}$
Therefore, we can see that there is another relation between ${{x}_{1}}\text{ and }{{x}_{2}}$ other than ${{x}_{1}}={{x}_{2}}$, for the function $\left( f+g \right)$. Hence, $\left( f+g \right)$ is not one-one.
Note: We can easily check that the functions f and g are one-one in the given domain by the help of graph. Also, we can easily say that at $0$ and $\dfrac{\pi }{2}$ the value of the function $\left( f+g \right)$ is 1. Therefore, the function $\left( f+g \right)$ cannot be one-one. But the above solution is the true way of solving the question.
Complete step-by-step solution -
For the function $f(x)=\sin x$.
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $f(x)$. Now, substituting $f({{x}_{1}})=f({{x}_{2}})$, we get,
$\sin {{x}_{1}}=\sin {{x}_{2}}$, we know that in the domain $\left[ 0,\dfrac{\pi }{2} \right]$ the value of sine ranges from 0 to 1, with a particular value for each angle. Therefore, for $\sin {{x}_{1}}=\sin {{x}_{2}}$, we must have ${{x}_{1}}={{x}_{2}}$.
Therefore, $f(x)=\sin x$ is a one-one function.
For the function $g(x)=\cos x$.
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $g(x)$ . Now, substituting $g({{x}_{1}})=g({{x}_{2}})$, we get,
$\cos {{x}_{1}}=\cos {{x}_{2}}$, we know that in the domain $\left[ 0,\dfrac{\pi }{2} \right]$ the value of cosine ranges from 1 to 0, with a particular value for each angle. Therefore, for $\cos {{x}_{1}}=\cos {{x}_{2}}$, we must have ${{x}_{1}}={{x}_{2}}$.
Therefore, $g(x)=\cos x$ is a one-one function.
Considering the function $\left( f+g \right)$.
$(f+g)=\sin x+\cos x$
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $\left( f+g \right)$. Now, substituting $(f+g)({{x}_{1}})=(f+g)({{x}_{2}})$, we get,
$\begin{align}
& \sin {{x}_{1}}+\cos {{x}_{1}}=\sin {{x}_{2}}+\cos {{x}_{2}} \\
& \Rightarrow \sin {{x}_{1}}-\sin {{x}_{2}}=\cos {{x}_{2}}-\cos {{x}_{1}} \\
\end{align}$
Applying the formula: $\sin a-\sin b=2\sin \left( \dfrac{a-b}{2} \right)\cos \left( \dfrac{a+b}{2} \right)$ and$\cos a-\cos b=2\sin \left( \dfrac{b-a}{2} \right)\sin \left( \dfrac{a+b}{2} \right)$, we get,
\[\begin{align}
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=2\sin \left( \dfrac{{{x}_{1}}-{{x}_{1}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \\
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=0 \\
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\
& \Rightarrow \sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\text{ or }\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\
\end{align}\]
Now, if \[\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)=0\], then \[\dfrac{{{x}_{1}}-{{x}_{2}}}{2}=0\] because $\sin {{0}^{\circ }}=0$. Therefore,
\[\begin{align}
& {{x}_{1}}-{{x}_{2}}=0 \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}\]
Also, if \[\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0\], then
\[\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)\]
Dividing both sides by \[\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)\], we get,
$1=\tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)$
We know that, $\tan \dfrac{\pi }{4}=1$. Therefore,
$\begin{align}
& \tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\tan \dfrac{\pi }{4} \\
& \Rightarrow \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\dfrac{\pi }{4} \\
& \Rightarrow {{x}_{1}}+{{x}_{2}}=\dfrac{\pi }{2} \\
& \Rightarrow {{x}_{1}}=\dfrac{\pi }{2}-{{x}_{2}} \\
\end{align}$
Therefore, we can see that there is another relation between ${{x}_{1}}\text{ and }{{x}_{2}}$ other than ${{x}_{1}}={{x}_{2}}$, for the function $\left( f+g \right)$. Hence, $\left( f+g \right)$ is not one-one.
Note: We can easily check that the functions f and g are one-one in the given domain by the help of graph. Also, we can easily say that at $0$ and $\dfrac{\pi }{2}$ the value of the function $\left( f+g \right)$ is 1. Therefore, the function $\left( f+g \right)$ cannot be one-one. But the above solution is the true way of solving the question.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
