
Let in the given domain $f:\left[ 0,\dfrac{\pi }{2} \right]\to R: $ we have a function $f(x)=\sin x$ and in domain $g:\left[ 0,\dfrac{\pi }{2} \right]\to R: $ we have $g(x)=\cos x$. Show that each one of f and g is one-one but $\left( f+g \right)$ is not one-one.
Answer
611.1k+ views
Hint: To prove that the given function is one-one, assume two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the set of the domain of the given function and show that, if $f({{x}_{1}})=f({{x}_{2}})$ then, ${{x}_{1}}={{x}_{2}}$. If we are getting any other relation between ${{x}_{1}}$ and \[{{x}_{2}}\] then the function is not one-one.
Complete step-by-step solution -
For the function $f(x)=\sin x$.
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $f(x)$. Now, substituting $f({{x}_{1}})=f({{x}_{2}})$, we get,
$\sin {{x}_{1}}=\sin {{x}_{2}}$, we know that in the domain $\left[ 0,\dfrac{\pi }{2} \right]$ the value of sine ranges from 0 to 1, with a particular value for each angle. Therefore, for $\sin {{x}_{1}}=\sin {{x}_{2}}$, we must have ${{x}_{1}}={{x}_{2}}$.
Therefore, $f(x)=\sin x$ is a one-one function.
For the function $g(x)=\cos x$.
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $g(x)$ . Now, substituting $g({{x}_{1}})=g({{x}_{2}})$, we get,
$\cos {{x}_{1}}=\cos {{x}_{2}}$, we know that in the domain $\left[ 0,\dfrac{\pi }{2} \right]$ the value of cosine ranges from 1 to 0, with a particular value for each angle. Therefore, for $\cos {{x}_{1}}=\cos {{x}_{2}}$, we must have ${{x}_{1}}={{x}_{2}}$.
Therefore, $g(x)=\cos x$ is a one-one function.
Considering the function $\left( f+g \right)$.
$(f+g)=\sin x+\cos x$
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $\left( f+g \right)$. Now, substituting $(f+g)({{x}_{1}})=(f+g)({{x}_{2}})$, we get,
$\begin{align}
& \sin {{x}_{1}}+\cos {{x}_{1}}=\sin {{x}_{2}}+\cos {{x}_{2}} \\
& \Rightarrow \sin {{x}_{1}}-\sin {{x}_{2}}=\cos {{x}_{2}}-\cos {{x}_{1}} \\
\end{align}$
Applying the formula: $\sin a-\sin b=2\sin \left( \dfrac{a-b}{2} \right)\cos \left( \dfrac{a+b}{2} \right)$ and$\cos a-\cos b=2\sin \left( \dfrac{b-a}{2} \right)\sin \left( \dfrac{a+b}{2} \right)$, we get,
\[\begin{align}
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=2\sin \left( \dfrac{{{x}_{1}}-{{x}_{1}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \\
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=0 \\
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\
& \Rightarrow \sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\text{ or }\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\
\end{align}\]
Now, if \[\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)=0\], then \[\dfrac{{{x}_{1}}-{{x}_{2}}}{2}=0\] because $\sin {{0}^{\circ }}=0$. Therefore,
\[\begin{align}
& {{x}_{1}}-{{x}_{2}}=0 \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}\]
Also, if \[\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0\], then
\[\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)\]
Dividing both sides by \[\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)\], we get,
$1=\tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)$
We know that, $\tan \dfrac{\pi }{4}=1$. Therefore,
$\begin{align}
& \tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\tan \dfrac{\pi }{4} \\
& \Rightarrow \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\dfrac{\pi }{4} \\
& \Rightarrow {{x}_{1}}+{{x}_{2}}=\dfrac{\pi }{2} \\
& \Rightarrow {{x}_{1}}=\dfrac{\pi }{2}-{{x}_{2}} \\
\end{align}$
Therefore, we can see that there is another relation between ${{x}_{1}}\text{ and }{{x}_{2}}$ other than ${{x}_{1}}={{x}_{2}}$, for the function $\left( f+g \right)$. Hence, $\left( f+g \right)$ is not one-one.
Note: We can easily check that the functions f and g are one-one in the given domain by the help of graph. Also, we can easily say that at $0$ and $\dfrac{\pi }{2}$ the value of the function $\left( f+g \right)$ is 1. Therefore, the function $\left( f+g \right)$ cannot be one-one. But the above solution is the true way of solving the question.
Complete step-by-step solution -
For the function $f(x)=\sin x$.
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $f(x)$. Now, substituting $f({{x}_{1}})=f({{x}_{2}})$, we get,
$\sin {{x}_{1}}=\sin {{x}_{2}}$, we know that in the domain $\left[ 0,\dfrac{\pi }{2} \right]$ the value of sine ranges from 0 to 1, with a particular value for each angle. Therefore, for $\sin {{x}_{1}}=\sin {{x}_{2}}$, we must have ${{x}_{1}}={{x}_{2}}$.
Therefore, $f(x)=\sin x$ is a one-one function.
For the function $g(x)=\cos x$.
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $g(x)$ . Now, substituting $g({{x}_{1}})=g({{x}_{2}})$, we get,
$\cos {{x}_{1}}=\cos {{x}_{2}}$, we know that in the domain $\left[ 0,\dfrac{\pi }{2} \right]$ the value of cosine ranges from 1 to 0, with a particular value for each angle. Therefore, for $\cos {{x}_{1}}=\cos {{x}_{2}}$, we must have ${{x}_{1}}={{x}_{2}}$.
Therefore, $g(x)=\cos x$ is a one-one function.
Considering the function $\left( f+g \right)$.
$(f+g)=\sin x+\cos x$
Let us consider any two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the domain of $\left( f+g \right)$. Now, substituting $(f+g)({{x}_{1}})=(f+g)({{x}_{2}})$, we get,
$\begin{align}
& \sin {{x}_{1}}+\cos {{x}_{1}}=\sin {{x}_{2}}+\cos {{x}_{2}} \\
& \Rightarrow \sin {{x}_{1}}-\sin {{x}_{2}}=\cos {{x}_{2}}-\cos {{x}_{1}} \\
\end{align}$
Applying the formula: $\sin a-\sin b=2\sin \left( \dfrac{a-b}{2} \right)\cos \left( \dfrac{a+b}{2} \right)$ and$\cos a-\cos b=2\sin \left( \dfrac{b-a}{2} \right)\sin \left( \dfrac{a+b}{2} \right)$, we get,
\[\begin{align}
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=2\sin \left( \dfrac{{{x}_{1}}-{{x}_{1}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \\
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=0 \\
& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\
& \Rightarrow \sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\text{ or }\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\
\end{align}\]
Now, if \[\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)=0\], then \[\dfrac{{{x}_{1}}-{{x}_{2}}}{2}=0\] because $\sin {{0}^{\circ }}=0$. Therefore,
\[\begin{align}
& {{x}_{1}}-{{x}_{2}}=0 \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}\]
Also, if \[\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0\], then
\[\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)\]
Dividing both sides by \[\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)\], we get,
$1=\tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)$
We know that, $\tan \dfrac{\pi }{4}=1$. Therefore,
$\begin{align}
& \tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\tan \dfrac{\pi }{4} \\
& \Rightarrow \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\dfrac{\pi }{4} \\
& \Rightarrow {{x}_{1}}+{{x}_{2}}=\dfrac{\pi }{2} \\
& \Rightarrow {{x}_{1}}=\dfrac{\pi }{2}-{{x}_{2}} \\
\end{align}$
Therefore, we can see that there is another relation between ${{x}_{1}}\text{ and }{{x}_{2}}$ other than ${{x}_{1}}={{x}_{2}}$, for the function $\left( f+g \right)$. Hence, $\left( f+g \right)$ is not one-one.
Note: We can easily check that the functions f and g are one-one in the given domain by the help of graph. Also, we can easily say that at $0$ and $\dfrac{\pi }{2}$ the value of the function $\left( f+g \right)$ is 1. Therefore, the function $\left( f+g \right)$ cannot be one-one. But the above solution is the true way of solving the question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

