
Let image of point $ A\left( 3,1 \right) $ about line $ x+y+7=0 $ be $ B\left( \alpha ,\beta \right) $ and image of $ B\left( \alpha ,\beta \right) $ about line $ x-2y+4=0 $ be $ C\left( \gamma ,8 \right) $ , then the circumcentre of $ \Delta ABC $ is
A. $ \left( -8,2 \right) $
B. $ \left( -8,-1 \right) $
C. $ \left( -6,-1 \right) $
D. $ \left( -8,0 \right) $
Answer
512.4k+ views
Hint: We first try to find the points and their actual values. The lines will be perpendicular and the points will have their midpoint on the line. We use these tricks to find the equations. We solve them to find the solution.
Complete step by step solution:
Let image of point $ A\left( 3,1 \right) $ about line $ x+y+7=0 $ be $ B\left( \alpha ,\beta \right) $ and image of $ B\left( \alpha ,\beta \right) $ about line $ x-2y+4=0 $ be $ C\left( \gamma ,8 \right) $ .
We know that any point and its image point are at the same distance from the mirror line.
The mid-point of them will be on the line.
The mid-point of $ A\left( 3,1 \right) $ and $ B\left( \alpha ,\beta \right) $ is $ M\equiv \left( \dfrac{3+\alpha }{2},\dfrac{1+\beta }{2} \right) $ .
M lies on the line $ x+y+7=0 $ which means the coordinates satisfy the equation.
Therefore, $ \dfrac{3+\alpha }{2}+\dfrac{1+\beta }{2}+7=0 $ .
Simplifying we get
$ \begin{align}
& \dfrac{3+\alpha }{2}+\dfrac{1+\beta }{2}+7=0 \\
& \Rightarrow 18+\alpha +\beta =0 \\
\end{align} $
These lines are also perpendicular to each other. $ A\left( 3,1 \right) $ is on the perpendicular of $ x+y+7=0 $ .
Therefore, the slopes are $ -1 $ and $ \dfrac{\beta -1}{\alpha -3} $ which gives $ \dfrac{\beta -1}{\alpha -3}\times \left( -1 \right)=-1 $ . So, $ \beta -1=\alpha -3 $ .
Solving them we get $ \alpha =-8;\beta =-10 $ .
Similarly, the mid-point of $ B\left( -8,-10 \right) $ and $ C\left( \gamma ,8 \right) $ is $ N\equiv \left( \dfrac{-8+\gamma }{2},\dfrac{-10+8}{2} \right)\equiv \left( \dfrac{-8+\gamma }{2},-1 \right) $ .
N lies on the line $ x-2y+4=0 $ which means the coordinates satisfy the equation.
Therefore, $ \dfrac{-8+\gamma }{2}+2+4=0 $ .
Simplifying we get
$ \begin{align}
& \dfrac{-8+\gamma }{2}+2+4=0 \\
& \Rightarrow \gamma =-4 \\
\end{align} $
The points are $ A\left( 3,1 \right) $ , $ B\left( -8,-10 \right) $ , $ C\left( -4,8 \right) $ .
If the circumcentre is $ X\left( h,k \right) $ , then \[{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}={{\left( h+8 \right)}^{2}}+{{\left( k+10 \right)}^{2}}\].
Simplifying we get
$ \begin{align}
& -6h+9-2k+1=16h+64+20k+100 \\
& \Rightarrow h+k=-7 \\
\end{align} $
Also \[{{\left( h+4 \right)}^{2}}+{{\left( k-8 \right)}^{2}}={{\left( h+8 \right)}^{2}}+{{\left( k+10 \right)}^{2}}\].
Simplifying we get
$ \begin{align}
& 8h+16-16k+64=16h+64+20k+100 \\
& \Rightarrow 2h+9k=-21 \\
\end{align} $
The solution of the two equations is $ h=-6,k=-1 $ . The correct option is C.
So, the correct answer is “Option C”.
Note: The distance of the midpoint of the sides from the circumcentre is equal for all three parts. We use that to find the coordinates of the point.
Complete step by step solution:
Let image of point $ A\left( 3,1 \right) $ about line $ x+y+7=0 $ be $ B\left( \alpha ,\beta \right) $ and image of $ B\left( \alpha ,\beta \right) $ about line $ x-2y+4=0 $ be $ C\left( \gamma ,8 \right) $ .
We know that any point and its image point are at the same distance from the mirror line.
The mid-point of them will be on the line.
The mid-point of $ A\left( 3,1 \right) $ and $ B\left( \alpha ,\beta \right) $ is $ M\equiv \left( \dfrac{3+\alpha }{2},\dfrac{1+\beta }{2} \right) $ .
M lies on the line $ x+y+7=0 $ which means the coordinates satisfy the equation.
Therefore, $ \dfrac{3+\alpha }{2}+\dfrac{1+\beta }{2}+7=0 $ .
Simplifying we get
$ \begin{align}
& \dfrac{3+\alpha }{2}+\dfrac{1+\beta }{2}+7=0 \\
& \Rightarrow 18+\alpha +\beta =0 \\
\end{align} $
These lines are also perpendicular to each other. $ A\left( 3,1 \right) $ is on the perpendicular of $ x+y+7=0 $ .
Therefore, the slopes are $ -1 $ and $ \dfrac{\beta -1}{\alpha -3} $ which gives $ \dfrac{\beta -1}{\alpha -3}\times \left( -1 \right)=-1 $ . So, $ \beta -1=\alpha -3 $ .
Solving them we get $ \alpha =-8;\beta =-10 $ .
Similarly, the mid-point of $ B\left( -8,-10 \right) $ and $ C\left( \gamma ,8 \right) $ is $ N\equiv \left( \dfrac{-8+\gamma }{2},\dfrac{-10+8}{2} \right)\equiv \left( \dfrac{-8+\gamma }{2},-1 \right) $ .
N lies on the line $ x-2y+4=0 $ which means the coordinates satisfy the equation.
Therefore, $ \dfrac{-8+\gamma }{2}+2+4=0 $ .
Simplifying we get
$ \begin{align}
& \dfrac{-8+\gamma }{2}+2+4=0 \\
& \Rightarrow \gamma =-4 \\
\end{align} $
The points are $ A\left( 3,1 \right) $ , $ B\left( -8,-10 \right) $ , $ C\left( -4,8 \right) $ .
If the circumcentre is $ X\left( h,k \right) $ , then \[{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}={{\left( h+8 \right)}^{2}}+{{\left( k+10 \right)}^{2}}\].
Simplifying we get
$ \begin{align}
& -6h+9-2k+1=16h+64+20k+100 \\
& \Rightarrow h+k=-7 \\
\end{align} $
Also \[{{\left( h+4 \right)}^{2}}+{{\left( k-8 \right)}^{2}}={{\left( h+8 \right)}^{2}}+{{\left( k+10 \right)}^{2}}\].
Simplifying we get
$ \begin{align}
& 8h+16-16k+64=16h+64+20k+100 \\
& \Rightarrow 2h+9k=-21 \\
\end{align} $
The solution of the two equations is $ h=-6,k=-1 $ . The correct option is C.
So, the correct answer is “Option C”.
Note: The distance of the midpoint of the sides from the circumcentre is equal for all three parts. We use that to find the coordinates of the point.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

