
Let $I=\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$, then
[a] $\dfrac{1}{2}\le I\le 1$
[b] $4\le I\le 2\sqrt{30}$
[c] $\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
[d] $1\le I\le \dfrac{2\sqrt{3}}{\sqrt{2}}$
Answer
590.4k+ views
Hint: Use the fact that $\dfrac{\sin x}{x}$ is decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Use the fact that if f(x) is a decreasing function in (a,b), then $f\left( b \right)\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx\le f\left( a \right)\left( b-a \right)}$.
Hence find the corresponding range of $\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$.
Complete step-by-step answer:
The green curve is of $\dfrac{\sin x}{x}$, $A\equiv \left( \dfrac{\pi }{4},0 \right)$ and $E\equiv \left( \dfrac{\pi }{3},0 \right)$.
As is evident from the graph, the area of rectangle BIEA is more than the value of the integral, and the area of the rectangle HFEA is less than the value of the integral.
Now we have
Area of rectangle BIEA $=AE\times AB=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
Now, we know that $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Using, we get
Area of rectangle BIEA $=\dfrac{\dfrac{1}{\sqrt{2}}}{\pi }\times 4\times \left( \dfrac{4\pi -3\pi }{12} \right)=\dfrac{1}{3\sqrt{2}}$
Multiplying the numerator and denominator by $\sqrt{2}$, we get
Area of rectangle BIEA $=\dfrac{\sqrt{2}}{6}$.
Also, the area of rectangle HFEA $=AH\times AE=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}\times \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
We know that $\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}$
Using, we get
Area of rectangle HFEA $=\dfrac{\dfrac{\sqrt{3}}{2}}{\pi }\times 3\times \dfrac{\pi }{12}=\dfrac{\sqrt{3}}{8}$
Now we know that the area of rectangle BIEA is more than the value of the integral and the area of the rectangle HFEA is less than the value of the integral.
Hence we have
$\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
Hence option [c] is correct
Note: If M is the maxima of f(x) and m is the minima of f(x) in the interval (a,b), the we have $m\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx}\le M\left( b-a \right)$
Now let f(x) $=\dfrac{\sin x}{x}$, we have
$\begin{align}
& f'\left( x \right)=\dfrac{x\cos x-\sin x}{{{x}^{2}}} \\
& \Rightarrow f'\left( x \right)=\cos x\dfrac{x-\tan x}{{{x}^{2}}} \\
\end{align}$
Now, we know that $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ and in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right),x>0,\cos x<1$. Hence, we have
$\cos x\dfrac{x-\tan x}{{{x}^{2}}}\le 0$
Hence we have
$f'\left( x \right)\le 0$
Hence f(x) is a decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Hence we have
$\forall {{x}_{1}},{{x}_{2}}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$ if ${{x}_{1}}<{{x}_{2}}$, then $f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$.
Hence we have $m=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}=\dfrac{3\sqrt{3}}{2\pi }$ and $M=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}=\dfrac{4\sqrt{2}}{2\pi }$
Hence we have
$\begin{align}
& \dfrac{3\sqrt{3}}{2\pi }\left( \dfrac{\pi }{12} \right)\le I\le \dfrac{4\sqrt{2}}{2\pi }\left( \dfrac{\pi }{12} \right) \\
& \Rightarrow \dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6} \\
\end{align}$
Hence option [c] is correct.
[2] Inequality $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ follows from LMVT
Apply LMVT in $\left[ 0.x \right]$ where $x\in \left( 0,\dfrac{\pi }{2} \right)$, we have $\dfrac{\tan x}{x-0}={{\sec }^{2}}c,c\in \left( 0,x \right)$.
Now, we know ${{\sec }^{2}}x\ge 1$
Hence, we have
$\tan x\ge x$
Use the fact that if f(x) is a decreasing function in (a,b), then $f\left( b \right)\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx\le f\left( a \right)\left( b-a \right)}$.
Hence find the corresponding range of $\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$.
Complete step-by-step answer:
The green curve is of $\dfrac{\sin x}{x}$, $A\equiv \left( \dfrac{\pi }{4},0 \right)$ and $E\equiv \left( \dfrac{\pi }{3},0 \right)$.
As is evident from the graph, the area of rectangle BIEA is more than the value of the integral, and the area of the rectangle HFEA is less than the value of the integral.
Now we have
Area of rectangle BIEA $=AE\times AB=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
Now, we know that $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Using, we get
Area of rectangle BIEA $=\dfrac{\dfrac{1}{\sqrt{2}}}{\pi }\times 4\times \left( \dfrac{4\pi -3\pi }{12} \right)=\dfrac{1}{3\sqrt{2}}$
Multiplying the numerator and denominator by $\sqrt{2}$, we get
Area of rectangle BIEA $=\dfrac{\sqrt{2}}{6}$.
Also, the area of rectangle HFEA $=AH\times AE=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}\times \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
We know that $\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}$
Using, we get
Area of rectangle HFEA $=\dfrac{\dfrac{\sqrt{3}}{2}}{\pi }\times 3\times \dfrac{\pi }{12}=\dfrac{\sqrt{3}}{8}$
Now we know that the area of rectangle BIEA is more than the value of the integral and the area of the rectangle HFEA is less than the value of the integral.
Hence we have
$\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
Hence option [c] is correct
Note: If M is the maxima of f(x) and m is the minima of f(x) in the interval (a,b), the we have $m\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx}\le M\left( b-a \right)$
Now let f(x) $=\dfrac{\sin x}{x}$, we have
$\begin{align}
& f'\left( x \right)=\dfrac{x\cos x-\sin x}{{{x}^{2}}} \\
& \Rightarrow f'\left( x \right)=\cos x\dfrac{x-\tan x}{{{x}^{2}}} \\
\end{align}$
Now, we know that $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ and in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right),x>0,\cos x<1$. Hence, we have
$\cos x\dfrac{x-\tan x}{{{x}^{2}}}\le 0$
Hence we have
$f'\left( x \right)\le 0$
Hence f(x) is a decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Hence we have
$\forall {{x}_{1}},{{x}_{2}}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$ if ${{x}_{1}}<{{x}_{2}}$, then $f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$.
Hence we have $m=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}=\dfrac{3\sqrt{3}}{2\pi }$ and $M=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}=\dfrac{4\sqrt{2}}{2\pi }$
Hence we have
$\begin{align}
& \dfrac{3\sqrt{3}}{2\pi }\left( \dfrac{\pi }{12} \right)\le I\le \dfrac{4\sqrt{2}}{2\pi }\left( \dfrac{\pi }{12} \right) \\
& \Rightarrow \dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6} \\
\end{align}$
Hence option [c] is correct.
[2] Inequality $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ follows from LMVT
Apply LMVT in $\left[ 0.x \right]$ where $x\in \left( 0,\dfrac{\pi }{2} \right)$, we have $\dfrac{\tan x}{x-0}={{\sec }^{2}}c,c\in \left( 0,x \right)$.
Now, we know ${{\sec }^{2}}x\ge 1$
Hence, we have
$\tan x\ge x$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

