
Let $I=\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$, then
[a] $\dfrac{1}{2}\le I\le 1$
[b] $4\le I\le 2\sqrt{30}$
[c] $\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
[d] $1\le I\le \dfrac{2\sqrt{3}}{\sqrt{2}}$
Answer
509.4k+ views
Hint: Use the fact that $\dfrac{\sin x}{x}$ is decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Use the fact that if f(x) is a decreasing function in (a,b), then $f\left( b \right)\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx\le f\left( a \right)\left( b-a \right)}$.
Hence find the corresponding range of $\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$.
Complete step-by-step answer:
The green curve is of $\dfrac{\sin x}{x}$, $A\equiv \left( \dfrac{\pi }{4},0 \right)$ and $E\equiv \left( \dfrac{\pi }{3},0 \right)$.
As is evident from the graph, the area of rectangle BIEA is more than the value of the integral, and the area of the rectangle HFEA is less than the value of the integral.
Now we have
Area of rectangle BIEA $=AE\times AB=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
Now, we know that $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Using, we get
Area of rectangle BIEA $=\dfrac{\dfrac{1}{\sqrt{2}}}{\pi }\times 4\times \left( \dfrac{4\pi -3\pi }{12} \right)=\dfrac{1}{3\sqrt{2}}$
Multiplying the numerator and denominator by $\sqrt{2}$, we get
Area of rectangle BIEA $=\dfrac{\sqrt{2}}{6}$.
Also, the area of rectangle HFEA $=AH\times AE=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}\times \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
We know that $\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}$
Using, we get
Area of rectangle HFEA $=\dfrac{\dfrac{\sqrt{3}}{2}}{\pi }\times 3\times \dfrac{\pi }{12}=\dfrac{\sqrt{3}}{8}$
Now we know that the area of rectangle BIEA is more than the value of the integral and the area of the rectangle HFEA is less than the value of the integral.
Hence we have
$\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
Hence option [c] is correct
Note: If M is the maxima of f(x) and m is the minima of f(x) in the interval (a,b), the we have $m\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx}\le M\left( b-a \right)$
Now let f(x) $=\dfrac{\sin x}{x}$, we have
$\begin{align}
& f'\left( x \right)=\dfrac{x\cos x-\sin x}{{{x}^{2}}} \\
& \Rightarrow f'\left( x \right)=\cos x\dfrac{x-\tan x}{{{x}^{2}}} \\
\end{align}$
Now, we know that $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ and in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right),x>0,\cos x<1$. Hence, we have
$\cos x\dfrac{x-\tan x}{{{x}^{2}}}\le 0$
Hence we have
$f'\left( x \right)\le 0$
Hence f(x) is a decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Hence we have
$\forall {{x}_{1}},{{x}_{2}}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$ if ${{x}_{1}}<{{x}_{2}}$, then $f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$.
Hence we have $m=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}=\dfrac{3\sqrt{3}}{2\pi }$ and $M=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}=\dfrac{4\sqrt{2}}{2\pi }$
Hence we have
$\begin{align}
& \dfrac{3\sqrt{3}}{2\pi }\left( \dfrac{\pi }{12} \right)\le I\le \dfrac{4\sqrt{2}}{2\pi }\left( \dfrac{\pi }{12} \right) \\
& \Rightarrow \dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6} \\
\end{align}$
Hence option [c] is correct.
[2] Inequality $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ follows from LMVT
Apply LMVT in $\left[ 0.x \right]$ where $x\in \left( 0,\dfrac{\pi }{2} \right)$, we have $\dfrac{\tan x}{x-0}={{\sec }^{2}}c,c\in \left( 0,x \right)$.
Now, we know ${{\sec }^{2}}x\ge 1$
Hence, we have
$\tan x\ge x$
Use the fact that if f(x) is a decreasing function in (a,b), then $f\left( b \right)\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx\le f\left( a \right)\left( b-a \right)}$.
Hence find the corresponding range of $\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$.
Complete step-by-step answer:

The green curve is of $\dfrac{\sin x}{x}$, $A\equiv \left( \dfrac{\pi }{4},0 \right)$ and $E\equiv \left( \dfrac{\pi }{3},0 \right)$.
As is evident from the graph, the area of rectangle BIEA is more than the value of the integral, and the area of the rectangle HFEA is less than the value of the integral.
Now we have
Area of rectangle BIEA $=AE\times AB=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
Now, we know that $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Using, we get
Area of rectangle BIEA $=\dfrac{\dfrac{1}{\sqrt{2}}}{\pi }\times 4\times \left( \dfrac{4\pi -3\pi }{12} \right)=\dfrac{1}{3\sqrt{2}}$
Multiplying the numerator and denominator by $\sqrt{2}$, we get
Area of rectangle BIEA $=\dfrac{\sqrt{2}}{6}$.
Also, the area of rectangle HFEA $=AH\times AE=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}\times \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
We know that $\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}$
Using, we get
Area of rectangle HFEA $=\dfrac{\dfrac{\sqrt{3}}{2}}{\pi }\times 3\times \dfrac{\pi }{12}=\dfrac{\sqrt{3}}{8}$
Now we know that the area of rectangle BIEA is more than the value of the integral and the area of the rectangle HFEA is less than the value of the integral.
Hence we have
$\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
Hence option [c] is correct
Note: If M is the maxima of f(x) and m is the minima of f(x) in the interval (a,b), the we have $m\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx}\le M\left( b-a \right)$
Now let f(x) $=\dfrac{\sin x}{x}$, we have
$\begin{align}
& f'\left( x \right)=\dfrac{x\cos x-\sin x}{{{x}^{2}}} \\
& \Rightarrow f'\left( x \right)=\cos x\dfrac{x-\tan x}{{{x}^{2}}} \\
\end{align}$
Now, we know that $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ and in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right),x>0,\cos x<1$. Hence, we have
$\cos x\dfrac{x-\tan x}{{{x}^{2}}}\le 0$
Hence we have
$f'\left( x \right)\le 0$
Hence f(x) is a decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Hence we have
$\forall {{x}_{1}},{{x}_{2}}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$ if ${{x}_{1}}<{{x}_{2}}$, then $f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$.
Hence we have $m=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}=\dfrac{3\sqrt{3}}{2\pi }$ and $M=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}=\dfrac{4\sqrt{2}}{2\pi }$
Hence we have
$\begin{align}
& \dfrac{3\sqrt{3}}{2\pi }\left( \dfrac{\pi }{12} \right)\le I\le \dfrac{4\sqrt{2}}{2\pi }\left( \dfrac{\pi }{12} \right) \\
& \Rightarrow \dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6} \\
\end{align}$
Hence option [c] is correct.
[2] Inequality $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ follows from LMVT
Apply LMVT in $\left[ 0.x \right]$ where $x\in \left( 0,\dfrac{\pi }{2} \right)$, we have $\dfrac{\tan x}{x-0}={{\sec }^{2}}c,c\in \left( 0,x \right)$.
Now, we know ${{\sec }^{2}}x\ge 1$
Hence, we have
$\tan x\ge x$
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
