
Let $I=\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$, then
[a] $\dfrac{1}{2}\le I\le 1$
[b] $4\le I\le 2\sqrt{30}$
[c] $\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
[d] $1\le I\le \dfrac{2\sqrt{3}}{\sqrt{2}}$
Answer
604.2k+ views
Hint: Use the fact that $\dfrac{\sin x}{x}$ is decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Use the fact that if f(x) is a decreasing function in (a,b), then $f\left( b \right)\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx\le f\left( a \right)\left( b-a \right)}$.
Hence find the corresponding range of $\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$.
Complete step-by-step answer:
The green curve is of $\dfrac{\sin x}{x}$, $A\equiv \left( \dfrac{\pi }{4},0 \right)$ and $E\equiv \left( \dfrac{\pi }{3},0 \right)$.
As is evident from the graph, the area of rectangle BIEA is more than the value of the integral, and the area of the rectangle HFEA is less than the value of the integral.
Now we have
Area of rectangle BIEA $=AE\times AB=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
Now, we know that $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Using, we get
Area of rectangle BIEA $=\dfrac{\dfrac{1}{\sqrt{2}}}{\pi }\times 4\times \left( \dfrac{4\pi -3\pi }{12} \right)=\dfrac{1}{3\sqrt{2}}$
Multiplying the numerator and denominator by $\sqrt{2}$, we get
Area of rectangle BIEA $=\dfrac{\sqrt{2}}{6}$.
Also, the area of rectangle HFEA $=AH\times AE=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}\times \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
We know that $\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}$
Using, we get
Area of rectangle HFEA $=\dfrac{\dfrac{\sqrt{3}}{2}}{\pi }\times 3\times \dfrac{\pi }{12}=\dfrac{\sqrt{3}}{8}$
Now we know that the area of rectangle BIEA is more than the value of the integral and the area of the rectangle HFEA is less than the value of the integral.
Hence we have
$\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
Hence option [c] is correct
Note: If M is the maxima of f(x) and m is the minima of f(x) in the interval (a,b), the we have $m\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx}\le M\left( b-a \right)$
Now let f(x) $=\dfrac{\sin x}{x}$, we have
$\begin{align}
& f'\left( x \right)=\dfrac{x\cos x-\sin x}{{{x}^{2}}} \\
& \Rightarrow f'\left( x \right)=\cos x\dfrac{x-\tan x}{{{x}^{2}}} \\
\end{align}$
Now, we know that $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ and in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right),x>0,\cos x<1$. Hence, we have
$\cos x\dfrac{x-\tan x}{{{x}^{2}}}\le 0$
Hence we have
$f'\left( x \right)\le 0$
Hence f(x) is a decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Hence we have
$\forall {{x}_{1}},{{x}_{2}}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$ if ${{x}_{1}}<{{x}_{2}}$, then $f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$.
Hence we have $m=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}=\dfrac{3\sqrt{3}}{2\pi }$ and $M=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}=\dfrac{4\sqrt{2}}{2\pi }$
Hence we have
$\begin{align}
& \dfrac{3\sqrt{3}}{2\pi }\left( \dfrac{\pi }{12} \right)\le I\le \dfrac{4\sqrt{2}}{2\pi }\left( \dfrac{\pi }{12} \right) \\
& \Rightarrow \dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6} \\
\end{align}$
Hence option [c] is correct.
[2] Inequality $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ follows from LMVT
Apply LMVT in $\left[ 0.x \right]$ where $x\in \left( 0,\dfrac{\pi }{2} \right)$, we have $\dfrac{\tan x}{x-0}={{\sec }^{2}}c,c\in \left( 0,x \right)$.
Now, we know ${{\sec }^{2}}x\ge 1$
Hence, we have
$\tan x\ge x$
Use the fact that if f(x) is a decreasing function in (a,b), then $f\left( b \right)\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx\le f\left( a \right)\left( b-a \right)}$.
Hence find the corresponding range of $\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}$.
Complete step-by-step answer:
The green curve is of $\dfrac{\sin x}{x}$, $A\equiv \left( \dfrac{\pi }{4},0 \right)$ and $E\equiv \left( \dfrac{\pi }{3},0 \right)$.
As is evident from the graph, the area of rectangle BIEA is more than the value of the integral, and the area of the rectangle HFEA is less than the value of the integral.
Now we have
Area of rectangle BIEA $=AE\times AB=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
Now, we know that $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Using, we get
Area of rectangle BIEA $=\dfrac{\dfrac{1}{\sqrt{2}}}{\pi }\times 4\times \left( \dfrac{4\pi -3\pi }{12} \right)=\dfrac{1}{3\sqrt{2}}$
Multiplying the numerator and denominator by $\sqrt{2}$, we get
Area of rectangle BIEA $=\dfrac{\sqrt{2}}{6}$.
Also, the area of rectangle HFEA $=AH\times AE=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}\times \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)$
We know that $\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}$
Using, we get
Area of rectangle HFEA $=\dfrac{\dfrac{\sqrt{3}}{2}}{\pi }\times 3\times \dfrac{\pi }{12}=\dfrac{\sqrt{3}}{8}$
Now we know that the area of rectangle BIEA is more than the value of the integral and the area of the rectangle HFEA is less than the value of the integral.
Hence we have
$\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}$
Hence option [c] is correct
Note: If M is the maxima of f(x) and m is the minima of f(x) in the interval (a,b), the we have $m\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx}\le M\left( b-a \right)$
Now let f(x) $=\dfrac{\sin x}{x}$, we have
$\begin{align}
& f'\left( x \right)=\dfrac{x\cos x-\sin x}{{{x}^{2}}} \\
& \Rightarrow f'\left( x \right)=\cos x\dfrac{x-\tan x}{{{x}^{2}}} \\
\end{align}$
Now, we know that $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ and in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right),x>0,\cos x<1$. Hence, we have
$\cos x\dfrac{x-\tan x}{{{x}^{2}}}\le 0$
Hence we have
$f'\left( x \right)\le 0$
Hence f(x) is a decreasing function in the interval $\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$.
Hence we have
$\forall {{x}_{1}},{{x}_{2}}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right)$ if ${{x}_{1}}<{{x}_{2}}$, then $f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$.
Hence we have $m=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}=\dfrac{3\sqrt{3}}{2\pi }$ and $M=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}=\dfrac{4\sqrt{2}}{2\pi }$
Hence we have
$\begin{align}
& \dfrac{3\sqrt{3}}{2\pi }\left( \dfrac{\pi }{12} \right)\le I\le \dfrac{4\sqrt{2}}{2\pi }\left( \dfrac{\pi }{12} \right) \\
& \Rightarrow \dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6} \\
\end{align}$
Hence option [c] is correct.
[2] Inequality $\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right)$ follows from LMVT
Apply LMVT in $\left[ 0.x \right]$ where $x\in \left( 0,\dfrac{\pi }{2} \right)$, we have $\dfrac{\tan x}{x-0}={{\sec }^{2}}c,c\in \left( 0,x \right)$.
Now, we know ${{\sec }^{2}}x\ge 1$
Hence, we have
$\tan x\ge x$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

