
Let $f(x)={{x}^{5}}$ and $g(x)=2x-3$. Find $\left( fog \right)(x)$ and $\left( fog \right)'(x)$.
Answer
593.7k+ views
Hint:To find $\left( fog \right)(x)$, substitute (2x – 3) in place of ‘x’ in the function $f(x)={{x}^{5}}$. Now, to find $\left( fog \right)'(x)$, differentiate the function obtained by substituting (2x – 3) in place of ‘x’ in the function $f(x)={{x}^{5}}$. Use the formula: \[\dfrac{d}{dx}{{\left[ F\left( x \right) \right]}^{n}}=n{{\left[ F\left( x \right) \right]}^{n-1}}\dfrac{d}{dx}\left[ F\left( x \right) \right]\], where $F\left( x \right)$ is the function obtained after the first step, to get the required derivative.
Complete step-by-step answer:
We have been provided with two functions: $f(x)={{x}^{5}}$ and $g(x)=2x-3$, and we have to find $\left( fog \right)(x)$ and $\left( fog \right)'(x)$.
Here, $\left( fog \right)(x)$ is called a composite function. In simplified form it can be written as:
$\left( fog \right)(x)=f\left( g(x) \right)$
To find the value of $\left( fog \right)(x)$, we have to substitute the value of $g(x)$ in place of ‘x’, in the function $f(x)$.
Therefore, in the above question, we have to substitute (2x – 3) in place of ‘x’ in the function $f(x)={{x}^{5}}$.
Substituting (2x – 3) in place of ‘x’ in the function $f(x)={{x}^{5}}$, we get,
$\begin{align}
& \left( fog \right)(x)=f\left( g(x) \right) \\
& ={{\left( 2x-3 \right)}^{5}} \\
\end{align}$
Now, to find $\left( fog \right)'(x)$, we must differentiate $\left( fog \right)(x)$.
Since, $\left( fog \right)(x)={{\left( 2x-3 \right)}^{5}}$ is of the form \[{{\left[ F\left( x \right) \right]}^{n}}\], where $F\left( x \right)=\left( 2x-3 \right)$ and n = 5. Therefore, using the formula: \[\dfrac{d}{dx}{{\left[ F\left( x \right) \right]}^{n}}=n{{\left[ F\left( x \right) \right]}^{n-1}}\dfrac{d}{dx}\left[ F\left( x \right) \right]\], we get,
\[\begin{align}
& {{\left( fog \right)}^{'}}\left( x \right)=\dfrac{d}{dx}{{\left[ 2x-3 \right]}^{5}} \\
& =5\times {{\left[ 2x-3 \right]}^{4}}\times \dfrac{d}{dx}\left[ 2x-3 \right] \\
& =5\times {{\left[ 2x-3 \right]}^{4}}\times 2 \\
& =10\times {{\left[ 2x-3 \right]}^{4}} \\
& =10{{\left[ 2x-3 \right]}^{4}} \\
\end{align}\]
Note: One may note that we can also break the terms of ${{\left( 2x-3 \right)}^{5}}$ by using the binomial formula: ${{\left( 2x-3 \right)}^{5}}=\sum\limits_{r=1}^{5}{{}^{5}{{C}_{r}}}{{\left( 2x \right)}^{5-r}}{{\left( -3 \right)}^{r}}$. We will get a total of six terms. Then we can differentiate these terms one by one. But this will be a lengthy process and the chances of making calculation mistakes are more. You may note that the answer will not change.
Complete step-by-step answer:
We have been provided with two functions: $f(x)={{x}^{5}}$ and $g(x)=2x-3$, and we have to find $\left( fog \right)(x)$ and $\left( fog \right)'(x)$.
Here, $\left( fog \right)(x)$ is called a composite function. In simplified form it can be written as:
$\left( fog \right)(x)=f\left( g(x) \right)$
To find the value of $\left( fog \right)(x)$, we have to substitute the value of $g(x)$ in place of ‘x’, in the function $f(x)$.
Therefore, in the above question, we have to substitute (2x – 3) in place of ‘x’ in the function $f(x)={{x}^{5}}$.
Substituting (2x – 3) in place of ‘x’ in the function $f(x)={{x}^{5}}$, we get,
$\begin{align}
& \left( fog \right)(x)=f\left( g(x) \right) \\
& ={{\left( 2x-3 \right)}^{5}} \\
\end{align}$
Now, to find $\left( fog \right)'(x)$, we must differentiate $\left( fog \right)(x)$.
Since, $\left( fog \right)(x)={{\left( 2x-3 \right)}^{5}}$ is of the form \[{{\left[ F\left( x \right) \right]}^{n}}\], where $F\left( x \right)=\left( 2x-3 \right)$ and n = 5. Therefore, using the formula: \[\dfrac{d}{dx}{{\left[ F\left( x \right) \right]}^{n}}=n{{\left[ F\left( x \right) \right]}^{n-1}}\dfrac{d}{dx}\left[ F\left( x \right) \right]\], we get,
\[\begin{align}
& {{\left( fog \right)}^{'}}\left( x \right)=\dfrac{d}{dx}{{\left[ 2x-3 \right]}^{5}} \\
& =5\times {{\left[ 2x-3 \right]}^{4}}\times \dfrac{d}{dx}\left[ 2x-3 \right] \\
& =5\times {{\left[ 2x-3 \right]}^{4}}\times 2 \\
& =10\times {{\left[ 2x-3 \right]}^{4}} \\
& =10{{\left[ 2x-3 \right]}^{4}} \\
\end{align}\]
Note: One may note that we can also break the terms of ${{\left( 2x-3 \right)}^{5}}$ by using the binomial formula: ${{\left( 2x-3 \right)}^{5}}=\sum\limits_{r=1}^{5}{{}^{5}{{C}_{r}}}{{\left( 2x \right)}^{5-r}}{{\left( -3 \right)}^{r}}$. We will get a total of six terms. Then we can differentiate these terms one by one. But this will be a lengthy process and the chances of making calculation mistakes are more. You may note that the answer will not change.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

