
let $\text{f(x)}={{2}^{10}}\text{x}+1$ and $\text{g(x)}={{3}^{10}}\text{x}-1$. If $\text{(fog)(x)}=\text{x}$, then x equal to.
$\begin{align}
& \text{A) }\dfrac{{{2}^{10}}-1}{{{2}^{10}}-{{3}^{-10}}} \\
& \text{B) }\dfrac{1-{{3}^{-10}}}{{{2}^{10}}-{{3}^{-10}}} \\
& \text{C) }\dfrac{1-{{2}^{-10}}}{{{3}^{10}}-{{2}^{-10}}} \\
& \text{D) }\dfrac{{{3}^{10}}-1}{{{3}^{10}}-{{2}^{-10}}} \\
\end{align}$
Answer
590.1k+ views
Hint: In this, we will first find the composition of function f(x) and g(x) and the find the value of x. Composition of two function is an operation that takes between the two function f and g to produce another function h.
Complete step by step answer:
Given that, $\text{f(x)}={{2}^{10}}\text{x}+1$ and $\text{g(x)}={{3}^{10}}\text{x}-1$
Let $\text{h(x) = (fog)(x)}$
$\text{h(x) = fo(g(x))}$
By using the function$\text{g(x)}={{3}^{10}}\text{x}-1$, we get
$\text{h(x) = f(}{{3}^{10}}\text{x}-1\text{)}$
By using the function$\text{f(x)}={{2}^{10}}\text{x}+1$, we get
$\text{h(x) = }{{2}^{10}}({{3}^{10}}\text{x}-1)+1.....(1)$
Since, $\text{(fog)(x)}=\text{x}$
$\Rightarrow \text{h(x)}=\text{x}....\text{(2)}$
From equation (1) and equation (2), we get
${{2}^{10}}({{3}^{10}}\text{x}-1)+1=\text{x}$
${{2}^{10}}{{3}^{10}}\text{x}-{{2}^{10}}+1=\text{x}$
Subtracting both sides by ${{2}^{10}}{{3}^{10}}\text{x}$, we get
${{2}^{10}}{{3}^{10}}\text{x}-{{2}^{10}}+1-{{2}^{10}}{{3}^{10}}\text{x}=\text{x}-{{2}^{10}}{{3}^{10}}\text{x}$
$-{{2}^{10}}+1=\text{x}-{{2}^{10}}{{3}^{10}}\text{x}......\text{(3)}$
Taking x common from right hand side of equation (3), we get
$-{{2}^{10}}+1=(1-{{2}^{10}}{{3}^{10}}\text{)x}....\text{(4)}$
By dividing equation (4) both sides by $1-{{2}^{10}}{{3}^{10}}$, we get
\[\dfrac{-{{2}^{10}}+1}{1-{{2}^{10}}{{3}^{10}}}=\dfrac{(1-{{2}^{10}}{{3}^{10}}\text{)x}}{1-{{2}^{10}}{{3}^{10}}}\text{.}\]
\[\Rightarrow \text{x}=\dfrac{-{{2}^{10}}+1}{1-{{2}^{10}}{{3}^{10}}}....\text{(5)}\]
Taking minus sign common form equation (5) right hand side’s numerator and denominator, we get
\[\Rightarrow \text{x}=\dfrac{-({{2}^{10}}-1)}{-({{2}^{10}}{{3}^{10}}-1)}\]
\[\Rightarrow \text{x}=\dfrac{({{2}^{10}}-1)}{({{2}^{10}}{{3}^{10}}-1)}.....(6)\]
By dividing numerator and denominator of right hand side of equation (6) by $2^{10}$, we get
\[\Rightarrow \text{x}=\dfrac{\dfrac{{{2}^{10}}-1}{{{2}^{10}}}}{\dfrac{{{2}^{10}}{{3}^{10}}-1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{\dfrac{{{2}^{10}}}{{{2}^{10}}}-\dfrac{1}{{{2}^{10}}}}{\dfrac{{{2}^{10}}{{3}^{10}}}{{{2}^{10}}}-\dfrac{1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{1-\dfrac{1}{{{2}^{10}}}}{{{3}^{10}}-\dfrac{1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{1-{{2}^{-10}}}{{{3}^{10}}-{{2}^{-10}}}\]
So, the correct answer is “Option C”.
Note: In this one should know what function is?
Let A and B be two non-empty sets. Then a function from A to B is defined to be a relation which is uniquely related to the element of set A to element of set B.
Complete step by step answer:
Given that, $\text{f(x)}={{2}^{10}}\text{x}+1$ and $\text{g(x)}={{3}^{10}}\text{x}-1$
Let $\text{h(x) = (fog)(x)}$
$\text{h(x) = fo(g(x))}$
By using the function$\text{g(x)}={{3}^{10}}\text{x}-1$, we get
$\text{h(x) = f(}{{3}^{10}}\text{x}-1\text{)}$
By using the function$\text{f(x)}={{2}^{10}}\text{x}+1$, we get
$\text{h(x) = }{{2}^{10}}({{3}^{10}}\text{x}-1)+1.....(1)$
Since, $\text{(fog)(x)}=\text{x}$
$\Rightarrow \text{h(x)}=\text{x}....\text{(2)}$
From equation (1) and equation (2), we get
${{2}^{10}}({{3}^{10}}\text{x}-1)+1=\text{x}$
${{2}^{10}}{{3}^{10}}\text{x}-{{2}^{10}}+1=\text{x}$
Subtracting both sides by ${{2}^{10}}{{3}^{10}}\text{x}$, we get
${{2}^{10}}{{3}^{10}}\text{x}-{{2}^{10}}+1-{{2}^{10}}{{3}^{10}}\text{x}=\text{x}-{{2}^{10}}{{3}^{10}}\text{x}$
$-{{2}^{10}}+1=\text{x}-{{2}^{10}}{{3}^{10}}\text{x}......\text{(3)}$
Taking x common from right hand side of equation (3), we get
$-{{2}^{10}}+1=(1-{{2}^{10}}{{3}^{10}}\text{)x}....\text{(4)}$
By dividing equation (4) both sides by $1-{{2}^{10}}{{3}^{10}}$, we get
\[\dfrac{-{{2}^{10}}+1}{1-{{2}^{10}}{{3}^{10}}}=\dfrac{(1-{{2}^{10}}{{3}^{10}}\text{)x}}{1-{{2}^{10}}{{3}^{10}}}\text{.}\]
\[\Rightarrow \text{x}=\dfrac{-{{2}^{10}}+1}{1-{{2}^{10}}{{3}^{10}}}....\text{(5)}\]
Taking minus sign common form equation (5) right hand side’s numerator and denominator, we get
\[\Rightarrow \text{x}=\dfrac{-({{2}^{10}}-1)}{-({{2}^{10}}{{3}^{10}}-1)}\]
\[\Rightarrow \text{x}=\dfrac{({{2}^{10}}-1)}{({{2}^{10}}{{3}^{10}}-1)}.....(6)\]
By dividing numerator and denominator of right hand side of equation (6) by $2^{10}$, we get
\[\Rightarrow \text{x}=\dfrac{\dfrac{{{2}^{10}}-1}{{{2}^{10}}}}{\dfrac{{{2}^{10}}{{3}^{10}}-1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{\dfrac{{{2}^{10}}}{{{2}^{10}}}-\dfrac{1}{{{2}^{10}}}}{\dfrac{{{2}^{10}}{{3}^{10}}}{{{2}^{10}}}-\dfrac{1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{1-\dfrac{1}{{{2}^{10}}}}{{{3}^{10}}-\dfrac{1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{1-{{2}^{-10}}}{{{3}^{10}}-{{2}^{-10}}}\]
So, the correct answer is “Option C”.
Note: In this one should know what function is?
Let A and B be two non-empty sets. Then a function from A to B is defined to be a relation which is uniquely related to the element of set A to element of set B.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

