
let $\text{f(x)}={{2}^{10}}\text{x}+1$ and $\text{g(x)}={{3}^{10}}\text{x}-1$. If $\text{(fog)(x)}=\text{x}$, then x equal to.
$\begin{align}
& \text{A) }\dfrac{{{2}^{10}}-1}{{{2}^{10}}-{{3}^{-10}}} \\
& \text{B) }\dfrac{1-{{3}^{-10}}}{{{2}^{10}}-{{3}^{-10}}} \\
& \text{C) }\dfrac{1-{{2}^{-10}}}{{{3}^{10}}-{{2}^{-10}}} \\
& \text{D) }\dfrac{{{3}^{10}}-1}{{{3}^{10}}-{{2}^{-10}}} \\
\end{align}$
Answer
511.5k+ views
Hint: In this, we will first find the composition of function f(x) and g(x) and the find the value of x. Composition of two function is an operation that takes between the two function f and g to produce another function h.
Complete step by step answer:
Given that, $\text{f(x)}={{2}^{10}}\text{x}+1$ and $\text{g(x)}={{3}^{10}}\text{x}-1$
Let $\text{h(x) = (fog)(x)}$
$\text{h(x) = fo(g(x))}$
By using the function$\text{g(x)}={{3}^{10}}\text{x}-1$, we get
$\text{h(x) = f(}{{3}^{10}}\text{x}-1\text{)}$
By using the function$\text{f(x)}={{2}^{10}}\text{x}+1$, we get
$\text{h(x) = }{{2}^{10}}({{3}^{10}}\text{x}-1)+1.....(1)$
Since, $\text{(fog)(x)}=\text{x}$
$\Rightarrow \text{h(x)}=\text{x}....\text{(2)}$
From equation (1) and equation (2), we get
${{2}^{10}}({{3}^{10}}\text{x}-1)+1=\text{x}$
${{2}^{10}}{{3}^{10}}\text{x}-{{2}^{10}}+1=\text{x}$
Subtracting both sides by ${{2}^{10}}{{3}^{10}}\text{x}$, we get
${{2}^{10}}{{3}^{10}}\text{x}-{{2}^{10}}+1-{{2}^{10}}{{3}^{10}}\text{x}=\text{x}-{{2}^{10}}{{3}^{10}}\text{x}$
$-{{2}^{10}}+1=\text{x}-{{2}^{10}}{{3}^{10}}\text{x}......\text{(3)}$
Taking x common from right hand side of equation (3), we get
$-{{2}^{10}}+1=(1-{{2}^{10}}{{3}^{10}}\text{)x}....\text{(4)}$
By dividing equation (4) both sides by $1-{{2}^{10}}{{3}^{10}}$, we get
\[\dfrac{-{{2}^{10}}+1}{1-{{2}^{10}}{{3}^{10}}}=\dfrac{(1-{{2}^{10}}{{3}^{10}}\text{)x}}{1-{{2}^{10}}{{3}^{10}}}\text{.}\]
\[\Rightarrow \text{x}=\dfrac{-{{2}^{10}}+1}{1-{{2}^{10}}{{3}^{10}}}....\text{(5)}\]
Taking minus sign common form equation (5) right hand side’s numerator and denominator, we get
\[\Rightarrow \text{x}=\dfrac{-({{2}^{10}}-1)}{-({{2}^{10}}{{3}^{10}}-1)}\]
\[\Rightarrow \text{x}=\dfrac{({{2}^{10}}-1)}{({{2}^{10}}{{3}^{10}}-1)}.....(6)\]
By dividing numerator and denominator of right hand side of equation (6) by $2^{10}$, we get
\[\Rightarrow \text{x}=\dfrac{\dfrac{{{2}^{10}}-1}{{{2}^{10}}}}{\dfrac{{{2}^{10}}{{3}^{10}}-1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{\dfrac{{{2}^{10}}}{{{2}^{10}}}-\dfrac{1}{{{2}^{10}}}}{\dfrac{{{2}^{10}}{{3}^{10}}}{{{2}^{10}}}-\dfrac{1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{1-\dfrac{1}{{{2}^{10}}}}{{{3}^{10}}-\dfrac{1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{1-{{2}^{-10}}}{{{3}^{10}}-{{2}^{-10}}}\]
So, the correct answer is “Option C”.
Note: In this one should know what function is?
Let A and B be two non-empty sets. Then a function from A to B is defined to be a relation which is uniquely related to the element of set A to element of set B.
Complete step by step answer:
Given that, $\text{f(x)}={{2}^{10}}\text{x}+1$ and $\text{g(x)}={{3}^{10}}\text{x}-1$
Let $\text{h(x) = (fog)(x)}$
$\text{h(x) = fo(g(x))}$
By using the function$\text{g(x)}={{3}^{10}}\text{x}-1$, we get
$\text{h(x) = f(}{{3}^{10}}\text{x}-1\text{)}$
By using the function$\text{f(x)}={{2}^{10}}\text{x}+1$, we get
$\text{h(x) = }{{2}^{10}}({{3}^{10}}\text{x}-1)+1.....(1)$
Since, $\text{(fog)(x)}=\text{x}$
$\Rightarrow \text{h(x)}=\text{x}....\text{(2)}$
From equation (1) and equation (2), we get
${{2}^{10}}({{3}^{10}}\text{x}-1)+1=\text{x}$
${{2}^{10}}{{3}^{10}}\text{x}-{{2}^{10}}+1=\text{x}$
Subtracting both sides by ${{2}^{10}}{{3}^{10}}\text{x}$, we get
${{2}^{10}}{{3}^{10}}\text{x}-{{2}^{10}}+1-{{2}^{10}}{{3}^{10}}\text{x}=\text{x}-{{2}^{10}}{{3}^{10}}\text{x}$
$-{{2}^{10}}+1=\text{x}-{{2}^{10}}{{3}^{10}}\text{x}......\text{(3)}$
Taking x common from right hand side of equation (3), we get
$-{{2}^{10}}+1=(1-{{2}^{10}}{{3}^{10}}\text{)x}....\text{(4)}$
By dividing equation (4) both sides by $1-{{2}^{10}}{{3}^{10}}$, we get
\[\dfrac{-{{2}^{10}}+1}{1-{{2}^{10}}{{3}^{10}}}=\dfrac{(1-{{2}^{10}}{{3}^{10}}\text{)x}}{1-{{2}^{10}}{{3}^{10}}}\text{.}\]
\[\Rightarrow \text{x}=\dfrac{-{{2}^{10}}+1}{1-{{2}^{10}}{{3}^{10}}}....\text{(5)}\]
Taking minus sign common form equation (5) right hand side’s numerator and denominator, we get
\[\Rightarrow \text{x}=\dfrac{-({{2}^{10}}-1)}{-({{2}^{10}}{{3}^{10}}-1)}\]
\[\Rightarrow \text{x}=\dfrac{({{2}^{10}}-1)}{({{2}^{10}}{{3}^{10}}-1)}.....(6)\]
By dividing numerator and denominator of right hand side of equation (6) by $2^{10}$, we get
\[\Rightarrow \text{x}=\dfrac{\dfrac{{{2}^{10}}-1}{{{2}^{10}}}}{\dfrac{{{2}^{10}}{{3}^{10}}-1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{\dfrac{{{2}^{10}}}{{{2}^{10}}}-\dfrac{1}{{{2}^{10}}}}{\dfrac{{{2}^{10}}{{3}^{10}}}{{{2}^{10}}}-\dfrac{1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{1-\dfrac{1}{{{2}^{10}}}}{{{3}^{10}}-\dfrac{1}{{{2}^{10}}}}\]
\[\Rightarrow \text{x}=\dfrac{1-{{2}^{-10}}}{{{3}^{10}}-{{2}^{-10}}}\]
So, the correct answer is “Option C”.
Note: In this one should know what function is?
Let A and B be two non-empty sets. Then a function from A to B is defined to be a relation which is uniquely related to the element of set A to element of set B.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
An example of ex situ conservation is a Sacred grove class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Observe the sketch of stirredtank bioreactor and label class 12 biology CBSE

The Dimensional formula for the electric field is -class-12-physics-CBSE

How do you convert from joules to electron volts class 12 physics CBSE
