
Let f(x, y) be a periodic function satisfying the condition $f\left( x,y \right)=f\left( 2x+2y \right),\left( 2y-2x \right)\forall x,y\in R$. Now, define a function g by $g\left( x \right)=f\left( {{2}^{x}},0 \right)$. Then, show g(x) is a periodic function, find its period?
Answer
521.1k+ views
Hint: The above given function is a periodic function. A periodic function is a function that repeats its values at regular intervals. Or we can say a function with a graph that repeats identically from left to right. It can be represented by $f\left( x \right)=f\left( x+p \right)$. We have to find the period of the given function. The period is the horizontal distance required for a complete cycle of graph.
Complete step by step solution:
The given periodic function is:
$\Rightarrow f\left( x,y \right)=f\left( 2x+2y,2y-2x \right).......(1)$
Since it is a periodic function then it will repeat itself, then we can write is as:
$\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left( 2\left( 2x+2y \right)+2\left( 2y-2x \right),2\left( 2y-2x \right)-2\left( 2x+2y \right) \right)$
Now simplify it
$\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left[ 4x+4y+4y-4x,4y-4x-4x-4y \right]$
$\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left( 8y,-8x \right)$
Now by equation (1), if we compare equation (1), and the above expression then we get
$\Rightarrow f\left( x,y \right)=f\left( 8y,-8x \right).....(2)$
Since it is a periodic function so we again repeat the process, then we get
$\begin{align}
& \Rightarrow f\left( 8y,-8x \right)=f\left[ 8\left( -8x \right),-8\left( 8y \right) \right] \\
& \Rightarrow f\left( 8y,-8x \right)=f\left( -64x,-64y \right) \\
\end{align}$
Now if we compare eq. (1), eq. (2), and the above expression, then we get
$\Rightarrow f\left( x,y \right)=f\left( 2x+2y,2y-2x \right)=f\left( 8y,-8x \right)=f\left( -64x,-64y \right)$
Now from the above equation, we get
$\Rightarrow f\left( x,y \right)=f\left( -64x,-64y \right)........(3)$
Again we will do same procedure, then we get
$\Rightarrow f\left( -64x,-64y \right)=f\left( -64\left( -64x \right),-64\left( -64y \right) \right)$
We know we can write $64={{2}^{6}}$ , putting the value in above expression, then we get
$\Rightarrow f\left( -64x,-64y \right)=f\left( -{{2}^{6}}\left( -{{2}^{6}}x \right),-{{2}^{6}}\left( -{{2}^{6}}y \right) \right)$
Now, we know that ${{a}^{x}}.{{a}^{y}}={{a}^{x+y}}$, now applying this in above equation, then we get
$\Rightarrow f\left( -64x,-64y \right)=f\left( {{2}^{12}}x,{{2}^{12}}y \right)$
Now from equation (3), we get
$\Rightarrow f\left( x,y \right)=f\left( {{2}^{12}}x,{{2}^{12}}y \right)$
Now we have prove that the function $g\left( x \right)=f\left( {{2}^{x}},0 \right)$is periodic, so from the above the expression, we get
$\Rightarrow g\left( x \right)=f\left( {{2}^{x}},0 \right)=f\left( {{2}^{12}}{{2}^{x}},0 \right)=f\left( {{2}^{12+x}},0 \right).......\left( 4 \right)$
Given, $g\left( x,0 \right)=f\left( {{2}^{x}},0 \right)$
Now from equation (4), we get
$\begin{align}
& \Rightarrow g\left( x,0 \right)=f\left( {{2}^{x}},0 \right)=f\left( {{2}^{12+x}},0 \right) \\
& \Rightarrow g\left( x,0 \right)=g\left( x+12,0 \right) \\
\end{align}$
Hence g(x) is a periodic function and its period is $12$.
Note: It is not hard to check the periodic function of any function. To determine the periodicity and period of a function, we follow some steps:
1 Put f(x+T)=f(x)
2 If there exists a positive number “T” satisfying equation in “1” and it is independent of “X”, then f(x) is periodic.
3 The least value of “T” is the period of the periodic function.
Complete step by step solution:
The given periodic function is:
$\Rightarrow f\left( x,y \right)=f\left( 2x+2y,2y-2x \right).......(1)$
Since it is a periodic function then it will repeat itself, then we can write is as:
$\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left( 2\left( 2x+2y \right)+2\left( 2y-2x \right),2\left( 2y-2x \right)-2\left( 2x+2y \right) \right)$
Now simplify it
$\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left[ 4x+4y+4y-4x,4y-4x-4x-4y \right]$
$\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left( 8y,-8x \right)$
Now by equation (1), if we compare equation (1), and the above expression then we get
$\Rightarrow f\left( x,y \right)=f\left( 8y,-8x \right).....(2)$
Since it is a periodic function so we again repeat the process, then we get
$\begin{align}
& \Rightarrow f\left( 8y,-8x \right)=f\left[ 8\left( -8x \right),-8\left( 8y \right) \right] \\
& \Rightarrow f\left( 8y,-8x \right)=f\left( -64x,-64y \right) \\
\end{align}$
Now if we compare eq. (1), eq. (2), and the above expression, then we get
$\Rightarrow f\left( x,y \right)=f\left( 2x+2y,2y-2x \right)=f\left( 8y,-8x \right)=f\left( -64x,-64y \right)$
Now from the above equation, we get
$\Rightarrow f\left( x,y \right)=f\left( -64x,-64y \right)........(3)$
Again we will do same procedure, then we get
$\Rightarrow f\left( -64x,-64y \right)=f\left( -64\left( -64x \right),-64\left( -64y \right) \right)$
We know we can write $64={{2}^{6}}$ , putting the value in above expression, then we get
$\Rightarrow f\left( -64x,-64y \right)=f\left( -{{2}^{6}}\left( -{{2}^{6}}x \right),-{{2}^{6}}\left( -{{2}^{6}}y \right) \right)$
Now, we know that ${{a}^{x}}.{{a}^{y}}={{a}^{x+y}}$, now applying this in above equation, then we get
$\Rightarrow f\left( -64x,-64y \right)=f\left( {{2}^{12}}x,{{2}^{12}}y \right)$
Now from equation (3), we get
$\Rightarrow f\left( x,y \right)=f\left( {{2}^{12}}x,{{2}^{12}}y \right)$
Now we have prove that the function $g\left( x \right)=f\left( {{2}^{x}},0 \right)$is periodic, so from the above the expression, we get
$\Rightarrow g\left( x \right)=f\left( {{2}^{x}},0 \right)=f\left( {{2}^{12}}{{2}^{x}},0 \right)=f\left( {{2}^{12+x}},0 \right).......\left( 4 \right)$
Given, $g\left( x,0 \right)=f\left( {{2}^{x}},0 \right)$
Now from equation (4), we get
$\begin{align}
& \Rightarrow g\left( x,0 \right)=f\left( {{2}^{x}},0 \right)=f\left( {{2}^{12+x}},0 \right) \\
& \Rightarrow g\left( x,0 \right)=g\left( x+12,0 \right) \\
\end{align}$
Hence g(x) is a periodic function and its period is $12$.
Note: It is not hard to check the periodic function of any function. To determine the periodicity and period of a function, we follow some steps:
1 Put f(x+T)=f(x)
2 If there exists a positive number “T” satisfying equation in “1” and it is independent of “X”, then f(x) is periodic.
3 The least value of “T” is the period of the periodic function.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

