
Let $f:R\to R$ be a differentiable function$f\left( 0 \right)=1$. If $y=f\left( x \right)$ satisfies the differential equation $f\left( x+y \right)=f\left( x \right){{f}^{'}}\left( y \right)+{{f}^{'}}\left( x \right)f\left( y \right)$ for all real $x$ and y. Then find out the value of ${{\log }_{e}}\left( f\left( 4 \right) \right)$ \[\]
Answer
574.5k+ views
Hint: Use the given initial condition and the differential equation to find out the value of ${{f}^{'}}\left( 0 \right)$ and $f\left( 0 \right)$. Then try to find the expression for $\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}$ whose integration using a standard formula will result in a form of the required ${{\log }_{e}}\left( f\left( 4 \right) \right)$.
Complete step-by-step answer:
The given differential equation with $f:R\to R$ as a differentiable function is
\[f\left( x+y \right)=f\left( x \right){{f}^{'}}\left( y \right)+{{f}^{'}}\left( x \right)f\left( y \right)....(1)\]
with initial condition$f\left( 0 \right)=1$ . We begin by putting the initial condition that is when $y=1$ when $x=0$ in the differential equation \[\]
$\begin{align}
& f\left( 0+0 \right)=f\left( 0 \right){{f}^{'}}\left( 0 \right)+{{f}^{'}}\left( 0 \right)f\left( 0 \right) \\
& \Rightarrow f\left( 0 \right)={{f}^{'}}\left( 0 \right)+{{f}^{'}}\left( 0 \right) \\
& \Rightarrow {{f}^{'}}\left( 0 \right)=\dfrac{1}{2} \\
\end{align}$ \[\]
For $y=0$ the differential equation transforms to
\[f\left( x \right)=f\left( x \right){{f}^{'}}\left( 0 \right)+{{f}^{'}}\left( x \right)f\left( 0 \right)....(2)\]
We put ${{f}^{'}}\left( 0 \right)=\dfrac{1}{2}$ and $f\left( 0 \right)=1$ in the given differential equation (2) to obtain,
\[\begin{align}
& f\left( x \right)=f\left( x \right){{f}^{'}}\left( 0 \right)+{{f}^{'}}\left( x \right)f\left( 0 \right) \\
& \Rightarrow f\left( x \right)=f\left( x \right)\cdot \dfrac{1}{2}+{{f}^{'}}\left( x \right)\cdot 1 \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2}f\left( x \right) \\
& \Rightarrow \dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}=\dfrac{1}{2} \\
\end{align}\] \[\]
We integrate both sides of the above result with respect to $x$ using the substitution of variable and the formula $\int{\dfrac{1}{t}}dt={{\log }_{e}}t$.
\[\begin{align}
& \int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}}dx=\int{\dfrac{1}{2}}dx \\
& \Rightarrow {{\log }_{e}}\left| f\left( x \right) \right|=\dfrac{x}{2}+c....(3) \\
\end{align}\]
\[\]We use again the given initial condition to find out the value of the constant occurred during integration,
\[\begin{align}
& {{\log }_{e}}\left| f\left( x \right) \right|=\dfrac{x}{2}+c \\
& \Rightarrow {{\log }_{e}}\left| y \right|=\dfrac{x}{2}+c\left( \because y=f\left( x \right) \right) \\
& \Rightarrow {{\log }_{e}}\left| 1 \right|=\dfrac{0}{2}+c \\
& \Rightarrow c=0 \\
\end{align}\]
Putting the value of $c$ in equation (3) we get
\[{{\log }_{e}}\left| f\left( x \right) \right|=\dfrac{x}{2}\]
As asked in the question we have to determine at $x=4$. So we put $x=4$ in the above result to get,
\[{{\log }_{e}}\left| f\left( 4 \right) \right|=\dfrac{4}{2}=2\]
So the answer is 2.
Note:Verification:
We can verify that the given function is an exponential function, say $ f\left( x \right)={{a}^{x}}$ . We can check the initial condition ${{a}^{0}}=1$ which satisfies. Also, ${{f}^{'}}\left( x \right)={{\log }_{e}}a\cdot {{a}^{x}}$ . At $x=0$
\[\begin{align}
& {{f}^{'}}\left( 0 \right)={{\log }_{e}}a\cdot {{a}^{1}}=\dfrac{1}{2} \\
& \Rightarrow a={{e}^{\dfrac{1}{2}}} \\
\end{align}\]
So the given function is obtained as $y=f\left( x \right)={{e}^{\dfrac{x}{2}}}$. We shall verify by putting it in the given differential equation . from the right hand side of equation (1)
\[\begin{align}
& f\left( x \right){{f}^{'}}\left( y \right)+{{f}^{'}}\left( x \right)f\left( y \right) \\
& ={{e}^{\dfrac{x}{2}}}\left( \dfrac{1}{2}{{e}^{\dfrac{y}{2}}} \right)+\left( \dfrac{1}{2}{{e}^{\dfrac{x}{2}}} \right){{e}^{\dfrac{y}{2}}} \\
& =2\left( {{e}^{\dfrac{x+y}{2}}} \right)=f\left( x+y \right) \\
\end{align}\]
Which is equal to the right hand side of equation (1).
We need to be careful of wrong substitution and use of standard formula in this problem which may lead to incorrect results. We should not leave the modulus sign while integrating $\dfrac{1}{x}$
Complete step-by-step answer:
The given differential equation with $f:R\to R$ as a differentiable function is
\[f\left( x+y \right)=f\left( x \right){{f}^{'}}\left( y \right)+{{f}^{'}}\left( x \right)f\left( y \right)....(1)\]
with initial condition$f\left( 0 \right)=1$ . We begin by putting the initial condition that is when $y=1$ when $x=0$ in the differential equation \[\]
$\begin{align}
& f\left( 0+0 \right)=f\left( 0 \right){{f}^{'}}\left( 0 \right)+{{f}^{'}}\left( 0 \right)f\left( 0 \right) \\
& \Rightarrow f\left( 0 \right)={{f}^{'}}\left( 0 \right)+{{f}^{'}}\left( 0 \right) \\
& \Rightarrow {{f}^{'}}\left( 0 \right)=\dfrac{1}{2} \\
\end{align}$ \[\]
For $y=0$ the differential equation transforms to
\[f\left( x \right)=f\left( x \right){{f}^{'}}\left( 0 \right)+{{f}^{'}}\left( x \right)f\left( 0 \right)....(2)\]
We put ${{f}^{'}}\left( 0 \right)=\dfrac{1}{2}$ and $f\left( 0 \right)=1$ in the given differential equation (2) to obtain,
\[\begin{align}
& f\left( x \right)=f\left( x \right){{f}^{'}}\left( 0 \right)+{{f}^{'}}\left( x \right)f\left( 0 \right) \\
& \Rightarrow f\left( x \right)=f\left( x \right)\cdot \dfrac{1}{2}+{{f}^{'}}\left( x \right)\cdot 1 \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2}f\left( x \right) \\
& \Rightarrow \dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}=\dfrac{1}{2} \\
\end{align}\] \[\]
We integrate both sides of the above result with respect to $x$ using the substitution of variable and the formula $\int{\dfrac{1}{t}}dt={{\log }_{e}}t$.
\[\begin{align}
& \int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}}dx=\int{\dfrac{1}{2}}dx \\
& \Rightarrow {{\log }_{e}}\left| f\left( x \right) \right|=\dfrac{x}{2}+c....(3) \\
\end{align}\]
\[\]We use again the given initial condition to find out the value of the constant occurred during integration,
\[\begin{align}
& {{\log }_{e}}\left| f\left( x \right) \right|=\dfrac{x}{2}+c \\
& \Rightarrow {{\log }_{e}}\left| y \right|=\dfrac{x}{2}+c\left( \because y=f\left( x \right) \right) \\
& \Rightarrow {{\log }_{e}}\left| 1 \right|=\dfrac{0}{2}+c \\
& \Rightarrow c=0 \\
\end{align}\]
Putting the value of $c$ in equation (3) we get
\[{{\log }_{e}}\left| f\left( x \right) \right|=\dfrac{x}{2}\]
As asked in the question we have to determine at $x=4$. So we put $x=4$ in the above result to get,
\[{{\log }_{e}}\left| f\left( 4 \right) \right|=\dfrac{4}{2}=2\]
So the answer is 2.
Note:Verification:
We can verify that the given function is an exponential function, say $ f\left( x \right)={{a}^{x}}$ . We can check the initial condition ${{a}^{0}}=1$ which satisfies. Also, ${{f}^{'}}\left( x \right)={{\log }_{e}}a\cdot {{a}^{x}}$ . At $x=0$
\[\begin{align}
& {{f}^{'}}\left( 0 \right)={{\log }_{e}}a\cdot {{a}^{1}}=\dfrac{1}{2} \\
& \Rightarrow a={{e}^{\dfrac{1}{2}}} \\
\end{align}\]
So the given function is obtained as $y=f\left( x \right)={{e}^{\dfrac{x}{2}}}$. We shall verify by putting it in the given differential equation . from the right hand side of equation (1)
\[\begin{align}
& f\left( x \right){{f}^{'}}\left( y \right)+{{f}^{'}}\left( x \right)f\left( y \right) \\
& ={{e}^{\dfrac{x}{2}}}\left( \dfrac{1}{2}{{e}^{\dfrac{y}{2}}} \right)+\left( \dfrac{1}{2}{{e}^{\dfrac{x}{2}}} \right){{e}^{\dfrac{y}{2}}} \\
& =2\left( {{e}^{\dfrac{x+y}{2}}} \right)=f\left( x+y \right) \\
\end{align}\]
Which is equal to the right hand side of equation (1).
We need to be careful of wrong substitution and use of standard formula in this problem which may lead to incorrect results. We should not leave the modulus sign while integrating $\dfrac{1}{x}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

